# Probing Question: How do dimples make golf balls travel farther?

##### June 21, 2007

A golfer's worst enemy may be divots, but his or her best friend may be dimples -- the dimples on a golf ball that send it sailing farther down the fairway.

"In the early days of golf in Scotland, golfers discovered that their old golf balls went farther than the new, smooth ones," said Mark Maughmer, professor of aerospace engineering at Penn State. The beat-up balls reacted differently to the forces they encountered while flying through the air, Maughmer explained.

It wasn't long before golfers were intentionally pitting their brand-new balls to improve their games. By 1905, golf balls were being manufactured with dimples, as they have been ever since.

What's the magic in those dimples?

All flying objects are subject to the forces of lift and drag, Maughmer explained. An airplane produces lift when the air flowing over its wings is forced downward, causing the plane to rise. At the same time, the plane's forward motion creates drag or resistance.

A golf ball can produce lift in a similar fashion. For example, if a struck ball has backspin, which changes the flow of the air around the ball, it produces lift, a force that is perpendicular to its flight path. As Maughmer explained it, this is a result of high pressure being created at the bottom of the airborne ball relative to its top, and the lift, he said, is a consequence of these differences in pressure.

At the same time, the struck ball also experiences drag, a retarding force that acts in the direction opposite to the direction of its flight path. Part of the drag force is due to the flow not being able to stay attached to the surface and "come together" on the back side of the ball. This "separated flow" forms a low-pressure wake behind the ball, and the difference between these pressures and the higher ones found on the front of the ball produce what is termed "pressure drag."

The other part of the drag force experienced by the ball is due to "skin friction," a tendency to pull the air nearest its surface along with it. "It's just air rubbing on an object, which retards its motion," Maughmer says.

Skin friction depends largely on the pattern of airflow in the boundary layer very close to the surface of the ball. If the flow is smooth, or laminar, it has lower skin friction, but is less able to stay attached to the rear surface of the ball. A turbulent boundary layer, however, although having more skin friction, is better able to stay attached to the back of the ball. That, Maughmer said, is where the dimples come in.

"By putting the dimples on a golf ball, I force the boundary layer to transition from a laminar one to a turbulent one," he explained. The greater "mixing" of air in the turbulent boundary layer allows passing air to cling to the flying ball a little bit longer before it separates, which in turn narrows the ball's wake, the region of low-pressure air created behind it. A smaller wake means less air pressure pulling on the back of a golf ball as it sails toward the green.

In effect it's a positive trade-off: "The ball pays a skin friction penalty, but gains a pressure drag advantage," Maughmer said. The difference is huge in terms of the distance a golf ball can be driven, he adds. Dimpled balls can travel nearly twice as far as smooth ones.

As an aerodynamicist, Maughmer admitted, he's somewhat limited in how much he can engineer a small, round object. "I can't mess with the shape of a golf ball," he said. "For something this size, shape and speed, dimples are the optimal solution."

Source: By Mike Shelton, Research Penn State

Explore further: Curiosity Mars rover checks odd-looking iron meteorite

## Related Stories

#### Curiosity Mars rover checks odd-looking iron meteorite

November 3, 2016

Laser-zapping of a globular, golf-ball-size object on Mars by NASA's Curiosity rover confirms that it is an iron-nickel meteorite fallen from the Red Planet's sky.

#### Volcano in southern Japan erupts; no injuries

October 8, 2016

Mount Aso in southern Japan sent huge plumes of gray smoke as high as 11 kilometers (6.8 miles) into the air on Saturday in one of the volcano's biggest explosions in years.

#### Caltech Scientists Test Air Flow Over the 2010 World Cup Soccer Ball (w/ Video)

June 25, 2010

(PhysOrg.com) -- The World Cup is in full swing, complete with an official new soccer ball named Jabulani, meaning "to celebrate" in Zulu. The players, however, aren't exactly celebrating. Instead, many of them are complaining ...

#### New ball to showcase talent in World Cup

June 5, 2014

University of Adelaide physics experts believe the new soccer ball created for the 2014 FIFA World Cup starting next week is a "keepers' ball".

#### Scientists discover second purpose for vortex generators

September 13, 2012

(Phys.org)—An airplane's vortex generators, which look like small fins on its surface, improve the plane's aerodynamics similar to the way in which the dimples on a golf ball improve the ball's aerodynamics: by delaying ...

#### Physicists aim to help golfers by producing better balls that fly farther

November 24, 2008

At the 61st Meeting of the American Physical Society's Division of Fluid Dynamics this week, a team of researchers from Arizona State University and the University of Maryland is reporting research that may soon give avid ...

## Recommended for you

#### Photonic crystal enhanced microscope sheds light on wound healing and cancer metastasis

December 7, 2016

University of Illinois Electrical & Computer Engineering and Bioengineering Professor Brian Cunningham's Nano Sensors group has invented a novel live-cell imaging method that could someday help biologists better understand ...

#### Uncovering the secrets of water and ice as materials

December 7, 2016

Water is vital to life on Earth and its importance simply can't be overstated—it's also deeply rooted within our conscience that there's something extremely special about it. Yet, from a scientific point of view, much remains ...

#### Physicists develop technique to save more lives by vaccinating fewer people

December 7, 2016

Scientists at the University of Aberdeen have developed a mathematical method to prevent epidemics by vaccinating fewer people than ever before.

#### Blocks of ice demonstrate levitated and directed motion

December 7, 2016

Resembling the Leidenfrost effect seen in rapidly boiling water droplets, a disk of ice becomes highly mobile due to a levitating layer of water between it and the smooth surface on which it rests and melts. The otherwise ...

#### The case for co-decaying dark matter

December 5, 2016

(Phys.org)—There isn't as much dark matter around today as there used to be. According to one of the most popular models of dark matter, the universe contained much more dark matter early on when the temperature was hotter. ...

#### Tunneling holds key to high-speed modulation of transistor and laser development

December 5, 2016

In 2004, electrical engineering pioneers Nick Holonyak, Jr. and Milton Feng at the University of Illinois invented the transistor laser—a three-port device that incorporated quantum-wells in the base and an optical cavity—increasing ...