Practical on-board hydrogen storage is goal of new Argonne research project

Jun 19, 2007

Solving one of the biggest problems in commercialization of fuel-cell-powered automobiles is the goal of a new $1.88 million research project on on-board hydrogen storage at the U.S. Department of Energy's Argonne National Laboratory.

To be practical, researchers say, the hydrogen storage system must be able to hold enough of the fuel for a driving range of 300 miles before refilling; no current technology meets this goal within the constraints of allowable weight and volume for passenger cars.

The Argonne research will investigate nanostructured polymeric materials as hydrogen storage adsorbents. Developed through an earlier collaboration between Argonne and the University of Chicago, the new polymer adsorbent material has shown great promise in preliminary tests. The new project funded by DOE will seek further improvements in storage capacity and an in-depth understanding of hydrogen-polymer interactions.

"The successful outcome of the project will lead to a low-cost, high-capacity hydrogen storage material that can be mass-produced within the existing industrial infrastructure," said Di-Jia Liu, Argonne scientist who is leading the research project.

Hydrogen is regarded as a future clean fuel replacement for gasoline. However, current hydrogen storage technology, as a high-pressure compressed gas or as a liquid at very low temperatures, does not adequately meet all the requirements for the automotive application.

A suitable hydrogen adsorbent will work at low pressures with enhanced capacity, Liu said. The polymer materials under investigation by Argonne-University of Chicago team have the potential to adsorb hydrogen without breaking its bond, a process called "physisorption." Preliminary tests of the material have demonstrated "encouraging hydrogen storage capacity, reversibility and stability," he said.

The research effort includes Argonne chemists Liu, Martha Finck and postdoctoral researcher Junbing Yang of the Chemical Engineering Division, theorist Peter Zapol of the Materials Science Division, physicist Peter Chupas of the Advanced Photon Source, and Professor Luping Yu's research group at the University of Chicago.

"This project," Liu said, "brings together experts from different disciplines, ranging from basic sciences to applied technology. Our hope is that through such close interaction, we would be able to develop the best possible materials with the support of fundamental understanding of hydrogen storage chemistry."

Source: Argonne National Laboratory

Explore further: Artificial muscles get graphene boost

Related Stories

Partnerships drive new transportation solutions

Oct 27, 2014

Hybrid car sales have taken off in recent years, with a fuel-sipping combination of electric- and gas-powered technologies that simultaneously deliver energy efficiency, low emissions, and strong performance. ...

Liquid water fails to keep ions apart

Oct 10, 2014

When hydrochloric acid is added to water, the positively and negatively charged ions don't flee from each other, according to scientists at Pacific Northwest National Laboratory and Argonne National Laboratory. ...

Recommended for you

Artificial muscles get graphene boost

May 22, 2015

Researchers in South Korea have developed an electrode consisting of a single-atom-thick layer of carbon to help make more durable artificial muscles.

How to make continuous rolls of graphene

May 21, 2015

Graphene is a material with a host of potential applications, including in flexible light sources, solar panels that could be integrated into windows, and membranes to desalinate and purify water. But all ...

Carbon nanothreads from compressed benzene

May 20, 2015

A new carbon nanomaterial – the thinnest possible one-dimensional thread that still retains a diamond-like structure – was created by the controlled, slow compression and decompression of benzene. The ...

Printing 3-D graphene structures for tissue engineering

May 19, 2015

Ever since single-layer graphene burst onto the science scene in 2004, the possibilities for the promising material have seemed nearly endless. With its high electrical conductivity, ability to store energy, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.