Practical on-board hydrogen storage is goal of new Argonne research project

June 19, 2007

Solving one of the biggest problems in commercialization of fuel-cell-powered automobiles is the goal of a new $1.88 million research project on on-board hydrogen storage at the U.S. Department of Energy's Argonne National Laboratory.

To be practical, researchers say, the hydrogen storage system must be able to hold enough of the fuel for a driving range of 300 miles before refilling; no current technology meets this goal within the constraints of allowable weight and volume for passenger cars.

The Argonne research will investigate nanostructured polymeric materials as hydrogen storage adsorbents. Developed through an earlier collaboration between Argonne and the University of Chicago, the new polymer adsorbent material has shown great promise in preliminary tests. The new project funded by DOE will seek further improvements in storage capacity and an in-depth understanding of hydrogen-polymer interactions.

"The successful outcome of the project will lead to a low-cost, high-capacity hydrogen storage material that can be mass-produced within the existing industrial infrastructure," said Di-Jia Liu, Argonne scientist who is leading the research project.

Hydrogen is regarded as a future clean fuel replacement for gasoline. However, current hydrogen storage technology, as a high-pressure compressed gas or as a liquid at very low temperatures, does not adequately meet all the requirements for the automotive application.

A suitable hydrogen adsorbent will work at low pressures with enhanced capacity, Liu said. The polymer materials under investigation by Argonne-University of Chicago team have the potential to adsorb hydrogen without breaking its bond, a process called "physisorption." Preliminary tests of the material have demonstrated "encouraging hydrogen storage capacity, reversibility and stability," he said.

The research effort includes Argonne chemists Liu, Martha Finck and postdoctoral researcher Junbing Yang of the Chemical Engineering Division, theorist Peter Zapol of the Materials Science Division, physicist Peter Chupas of the Advanced Photon Source, and Professor Luping Yu's research group at the University of Chicago.

"This project," Liu said, "brings together experts from different disciplines, ranging from basic sciences to applied technology. Our hope is that through such close interaction, we would be able to develop the best possible materials with the support of fundamental understanding of hydrogen storage chemistry."

Source: Argonne National Laboratory

Explore further: Fundamental researchers offer new ways to sort molecules for clean energy

Related Stories

Hydrogen uptake causes molecular 'avalanches' in palladium

January 27, 2016

Imagine a sponge that could soak up a thousand times its own volume in water. Now imagine how effective that sponge would be if it could store hydrogen instead of water, giving researchers an alternative to compressed air ...

Recommended for you

Nano-decoy lures human influenza A virus to its doom

October 25, 2016

To infect its victims, influenza A heads for the lungs, where it latches onto sialic acid on the surface of cells. So researchers created the perfect decoy: A carefully constructed spherical nanoparticle coated in sialic ...

New method increases energy density in lithium batteries

October 24, 2016

Yuan Yang, assistant professor of materials science and engineering at Columbia Engineering, has developed a new method to increase the energy density of lithium (Li-ion) batteries. He has built a trilayer structure that ...

Nanofiber coating prevents infections of prosthetic joints

October 24, 2016

In a proof-of-concept study with mice, scientists at The Johns Hopkins University show that a novel coating they made with antibiotic-releasing nanofibers has the potential to better prevent at least some serious bacterial ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.