Nanocomposite labeled cancer cells can be targeted and destroyed using lasers

June 6, 2007

A nanocomposite particle can be constructed so that it has a mix of properties that would not otherwise happen in nature. By combining an organic matrix with metallic clusters that can absorb light, it is possible to incorporate such particles into cells and then destroy those targeted cells with a laser.

In a presentation at the NSTI Nanotech 2007 Conference, researchers describe work conducted at the NanoBiotechnology Center, Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, NY and the University of Michigan, Ann Arbor, MI, regarding the creation and characterization of a dendrimer nanocomposite (DNC) matrix containing silver clusters that can be used to target and destroy melanoma cancer cells.

Composite NanoDevices (CNDs), are an emerging class of hybrid nanoparticulate materials. CNDs are made from dendrimer-based polymers, for example from poly(amidoamine) [(PAMAMs)].

To visualize the device, Dr. Lajos P. Balogh says simply think of nanoscale, dense, but soft "tumbleweed," where clusters of inorganic materials (such as silver) can be trapped inside. The CND "tumbleweed" device can be made in discrete sizes, carry different electric charges and can encapsulate different materials inside. This design offers researchers a wider choice of size, surface functionality and payload than traditional small in vivo devices where the agent is conjugated directly to the surface.

A laser can be used to kill cells indiscriminately, but it is really a blunt instrument. High powered lasers do so much damage that the tissue becomes opaque to further light. Yet, lower-powered lasers do not deliver enough energy to kill cells. By labeling cells with CNDs, light absorption can be selectively and locally enhanced wherever composite nanodevices are present. Irradiation of the mix of labeled and unlabeled cells by laser light, causes tiny bubbles to form that disrupt and damage the labeled cells, but leave unlabeled cells unaffected. This technology holds promise as an alternative therapy for cancer patients.

According to Dr. Balogh, "The DNC is a multi-functional platform. Because it can carry multiple agents inside, yet present a simple outer surface to the body, it can be programmed to deliver those agents to a particular organ or tissue."

Source: Elsevier

Explore further: Scientists uncover new way to grow rare life-saving blood stem cells

Related Stories

Red light controls signaling in human cells

April 25, 2016

Optogenetics now enables the development of new methods that can be used like light switches to turn on and off specific processes in cells. Optogenetic methods are based on the isolation and modification of light-sensitive ...

Scientists provide new insights into gene regulation

April 26, 2016

A team of researchers led by the University of Leicester has shed new light on how the regulation machinery that controls gene expression works by characterising a complex known as the NuRD complex.

Recommended for you

Personal cooling units on the horizon

April 28, 2016

Firefighters entering burning buildings, athletes competing in the broiling sun and workers in foundries may eventually be able to carry their own, lightweight cooling units with them, thanks to a nanowire array that cools, ...

Cooling graphene-based film close to pilot-scale production

April 29, 2016

Heat dissipation in electronics and optoelectronics is a severe bottleneck in the further development of systems in these fields. To come to grips with this serious issue, researchers at Chalmers University of Technology ...

Exploring phosphorene, a promising new material

April 28, 2016

Two-dimensional phosphane, a material known as phosphorene, has potential application as a material for semiconducting transistors in ever faster and more powerful computers. But there's a hitch. Many of the useful properties ...

Researchers create one-step graphene patterning method

April 27, 2016

Researchers from the University of Illinois at Urbana-Champaign have developed a one-step, facile method to pattern graphene by using stencil mask and oxygen plasma reactive-ion etching, and subsequent polymer-free direct ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.