Studying Magnetic Interface Ferromagnetism

Jun 28, 2007
Studying Magnetic Interface Ferromagnetism
Room temperature hysteresis measurements for same thickness of Py deposited on Si (blue) and CoO/Si (black dashed). Red lines indicate the magnetization value at the positive and negative saturation for Py/Si and Py/CoO/Si, respectively. Credit: National Synchrotron Light Source

The development of various magnetic-based devices, such as read-heads found inside your computer, depends on the discovery and improvement of new materials and magnetic effects.

In particular, researchers are interested in the magnetic behavior at the interfaces between different materials, especially in devices presenting so-called “exchange bias”– an effect produced by combining ferromagnetic and antiferromagnetic materials. Because these materials sometimes have very small magnetizations, characterizing them at atomic- and nanometer-length scales isn’t easy. However, using soft x-ray resonant magnetic scattering at the NSLS, a group of researchers has found a way to investigate how magnetism varies with the depth of a thin layer of material, specifically at the interface.

Many new state-of-the-art materials and devices for magnetic reading and writing rely on the interplay between different magnetic properties. This is especially true for quantum mechanical spins, the origin of the atoms’ magnetic behavior. In a ferromagnet, the atoms’ magnetic moments are aligned in parallel, whereas in an antiferromagnet, the moments are antiparallel. The coupling between an antiferromagnetic and a ferromagnetic material may give rise to exchange bias, which locks the ferromagnet spins (a major contributor to the magnetic moment). This effect is of fundamental importance to modern magnetic devices since it forms a reference layer with a fixed direction of magnetization.

This is not a new concept,” said lead researcher Sujoy Roy, from the University of California, San Diego. “It’s very important for technology and extensively used in spintronic-based devices.”

However, there are still ongoing controversies about the microscopic origin of exchange bias. Previous studies have revealed the existence of “unpinned spins” (spins in one direction not matched by an opposite spin and responding to applied field) at the antiferromagnetic interface. To examine how these spins are distributed and how they interact with the ferromagnetic spins across the interface, the researchers determined the depth dependence of the net magnetization in an exchange-biased sample consisting of permalloy, a nickel iron magnetic alloy (the ferromagnet) and cobalt oxide (the antiferomagnet). This was done at room temperature, where no “pinned” spins exist in the antiferromagnet and the exchange bias does not occur.

“Not many instruments can do this,” Roy said. “You can use microscopes to look at the surface of a material, but we wanted to scan the films from top to bottom, especially the interface.”

To do this, the researchers used x-ray reflectometry at NSLS beamline X13A and magnetometry at University of California, San Diego. These techniques allowed them to determine the distributions of free spins and of spin orientation, providing an atomic-level picture of the exchange bias mechanism.

“This was a very unique method,” Roy said. “We have been able to pinpoint exactly how the magnetism is varying as a function of depth in absolute units.”

The team found that a region at the permalloy/cobalt oxide interface is modified both chemically and magnetically. This modification is due to the formation of an oxide layer containing both cobalt and permalloy in between the bilayer. While there is no significant magnetization in the cobalt oxide, the temperature dependence of the interfacial layer’s net magnetization is different than the permalloy. Their results were published in the January 31, 2007 edition of Physical Review B.

The magnetization in this interfacial region, and how it interacts with the antiferromagnetic spins in the cobalt oxide at low temperatures, is expected to play a key role in determining the exchange bias properties of this bilayer. Future work will repeat the experiment at lower temperatures, where exchange bias develops in the sample, in order to determine how the interface properties change.

Other researchers include Cecilia Sánchez-Hanke and Chi-Chang Kao (NSLS); Sungkyun Park (Los Alamos National Laboratory and Korea Basic Science Institute); Mike Fitzsimmons (Los Alamos National Laboratory); Sunil Sinha (University of California, San Diego, and Los Alamos National Laboratory); Y. Tang, Jung-Il Hong, Xuerong Liu, M. Brian Maple, and Ami Berkowitz (University of California, San Diego); and David Smith (Arizona State University).

Source: by Kendra Snyder, National Synchrotron Light Source

Explore further: NIST seeks calibration methodologies for determining the accuracy of micro-flows

Related Stories

Fossil ancestor shows sharks have a bony past

16 minutes ago

Most people know that sharks have a distinctive, all-cartilage skeleton, but now a fossil from Western Australia has revealed a surprise 'missing link' to an earlier, more bony form of the fish.

Cheetah robot lands the running jump (w/ Video)

16 minutes ago

In a leap for robot development, the MIT researchers who built a robotic cheetah have now trained it to see and jump over hurdles as it runs—making this the first four-legged robot to run and jump over ...

Heat accelerates dry in California drought

18 minutes ago

Although record low precipitation has been the main driver of one of the worst droughts in California history, abnormally high temperatures have also played an important role in amplifying its adverse ef ...

Recommended for you

Researchers prove magnetism can control heat, sound

19 hours ago

Phonons—the elemental particles that transmit both heat and sound—have magnetic properties, according to a landmark study supported by Ohio Supercomputer Center (OSC) services and recently published by ...

How researchers listen for gravitational waves

May 28, 2015

A century ago, Albert Einstein postulated the existence of gravitational waves in his General Theory of Relativity. But until now, these distortions of space-time have remained stubbornly hidden from direct ...

What's fair?: New theory on income inequality

May 27, 2015

The increasing inequality in income and wealth in recent years, together with excessive pay packages of CEOs in the U.S. and abroad, is of growing concern, especially to policy makers. Income inequality was ...

Scientists one step closer to mimicking gamma-ray bursts

May 27, 2015

Using ever more energetic lasers, Lawrence Livermore researchers have produced a record high number of electron-positron pairs, opening exciting opportunities to study extreme astrophysical processes, such ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.