Long-distance record -- 'Quantum keys' sent 200 kilometers

Jun 01, 2007

Particles of light serving as “quantum keys”—the latest in encryption technology—have been sent over a record-setting 200-kilometer fiber-optic link by researchers from the National Institute of Standards and Technology (NIST), NTT Corp. in Japan, and Stanford University. The experiment, using mostly standard components and transmitting at telecommunications frequencies, offers an approach for making practical inter-city terrestrial quantum communications networks as well as long-range wireless systems using communication satellites.

The demonstration, described in Nature Photonics, was conducted in a Stanford lab with optical fiber wrapped around a spool. In addition to setting a distance record for quantum key distribution (QKD), it also is the first gigabit-rate experiment—transmitting at 10 billion light pulses per second—to produce secure keys.

The rate of processed key production—the keys corrected for errors and enhanced for privacy—was much lower due to the long distance involved, and the key was not used to encrypt a digital message as it would be in a complete QKD system.

QKD systems transmit a stream of single photons with their electric fields in different orientations to represent 1s and 0s, which are used to make quantum keys to encrypt and decrypt messages. Properly executed, quantum encryption is “unbreakable” because eavesdropping changes the state of the photons.

A key aspect of the experiment is the use of ultrafast superconducting single-photon detectors developed in Russia, with packaging and cooling technology custom-made at NIST labs in Boulder, Colo. Counting single photons (the smallest particles of light) rapidly and reliably has been a major challenge limiting the development of practical QKD systems.

The Russian detectors have very low false count rates because of their low-noise cryogenic operation, as well as superior timing resolution due to the physics of superconductors, in which electrons can switch from excited to relaxed states in just trillionths of a second.

Each detector consists of a superconducting niobium nitride nanowire operating just below the “critical current” at which it conducts electricity without resistance. When a single photon hits the wire, a hot spot is formed, and the current density increases until it exceeds the critical current. At this point, a non-superconducting barrier forms across the wire, and a voltage pulse is created. The starting edge of the voltage pulse pinpoints the photon’s arrival time.

Sae Woo Nam, a NIST physicist who packaged the detectors, said NIST offers unique expertise in connecting the single-photon detector chips to optical fiber and in designing refrigeration systems to operate at -270 degrees C (-454 degrees F) without liquid cryogens. “You need to know how to efficiently get light to the detector and how to amplify the signals,” he says.

Source: National Institute of Standards and Technology

Explore further: Researchers develop ultrahigh-resolution 3D microscopy technique for electric fields

Related Stories

Defining a national standard for dynamic pressure waves

May 25, 2015

In recent years, the physical damage done by pressure waves – such as traumatic brain injuries from explosives sustained by military personnel in the Middle East – has become an increasingly urgent public ...

Electrons corralled using new quantum tool

May 07, 2015

Researchers have succeeded in creating a new "whispering gallery" effect for electrons in a sheet of graphene—making it possible to precisely control a region that reflects electrons within the material. ...

Team tightens bounds on quantum information 'speed limit'

Apr 13, 2015

If you're designing a new computer, you want it to solve problems as fast as possible. Just how fast is possible is an open question when it comes to quantum computers, but physicists at the National Institute ...

Recommended for you

Could black phosphorus be the next silicon?

6 hours ago

As scientists continue to hunt for a material that will make it possible to pack more transistors on a chip, new research from McGill University and Université de Montréal adds to evidence that black phosphorus ...

Better memory with faster lasers

Jul 02, 2015

DVDs and Blu-ray disks contain so-called phase-change materials that morph from one atomic state to another after being struck with pulses of laser light, with data "recorded" in those two atomic states. ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.