Better insight into brain anatomical structures

Jun 15, 2007

Magnetic resonance imaging is a very effective method for revealing anatomical details of soft tissues. Contrast agents can help to make these images even clearer and allow physiological processes to be followed in real time. Conventional gadolinium complexes currently used as MRI contrast agent cannot reveal anatomic structures.

As reported in the journal Angewandte Chemie, Korean researchers led by Jung Hee Lee at Samsung Medical Center and Taeghwan Hyeon at Seoul National University have now developed a new MRI contrast agent using manganese oxide nanoparticles that produces images of the anatomic structures of mouse brain which are as clear as those obtained by histological examination.

Magnetic resonance images after injection of the manganese oxide nanoparticles gave a view into different areas of the mouse brains—in excellent resolution. "We have developed the first truly biocompatible MRI contrast agent for anatomical brain imaging," Lee and Hyeon point out. "With this agent, we are able to get high-contrast views of the anatomical details of live mouse brain." The researchers hope that their new contrast agent will allow better research and diagnosis of brain diseases involving the CNS (central nervous system), such as Alzheimer's disease, Parkinson's disease, strokes, and tumors.

Furthermore, the Korean team was able to attach antibodies to the manganese oxide nanoparticles. These antibodies recognize and specifically bind to receptors on the surface of breast cancer cells. In mouse brains with breast cancer metastases, the tumors were clearly highlighted by the antibody-coupled contrast agent. The same principle should allow other disease-related changes or physiological systems to be visualized by using the appropriate antibodies.

Citation: Taeghwan Hyeon, Development of a T1 Contrast Agent for Magnetic Resonance Imaging Using MnO Nanoparticles, Angewandte Chemie International Edition, doi: 10.1002/anie.200604775

Source: John Wiley & Sons

Explore further: Graphene and diamonds prove a slippery combination

Related Stories

Exposing breast cancer using nanoscale polymers

May 13, 2015

Photoacoustic imaging is a ground-breaking technique for spotting tumors inside living cells with the help of light-absorbing compounds known as contrast agents. A*STAR researchers have now discovered a way ...

Recommended for you

Graphene and diamonds prove a slippery combination

May 25, 2015

Scientists at the U.S. Department of Energy's Argonne National Laboratory have found a way to use tiny diamonds and graphene to give friction the slip, creating a new material combination that demonstrates ...

Artificial muscles get graphene boost

May 22, 2015

Researchers in South Korea have developed an electrode consisting of a single-atom-thick layer of carbon to help make more durable artificial muscles.

How to make continuous rolls of graphene

May 21, 2015

Graphene is a material with a host of potential applications, including in flexible light sources, solar panels that could be integrated into windows, and membranes to desalinate and purify water. But all ...

Carbon nanothreads from compressed benzene

May 20, 2015

A new carbon nanomaterial – the thinnest possible one-dimensional thread that still retains a diamond-like structure – was created by the controlled, slow compression and decompression of benzene. The ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.