Emulsion with a round-trip ticket

June 14, 2007

Oil and water are not miscible. However, it is possible to combine both into an emulsion in which they act as a unit—for example, in creams, body lotion, milk, or mayonnaise. In these substances, one of the two liquids is dispersed as tiny droplets in the other, which requires an emulsifier and vigorous shaking or stirring.

Whether the oil droplets are suspended in water (oil-in-water emulsion O/W) or the water droplets are suspended in oil (water-in-oil emulsion W/O) depends on various factors. In the journal Angewandte Chemie, a British team from the University of Hull now reports a double inversion of a nanoparticle-containing emulsion: By the successive addition of a surfactant, they were able to convert an O/W emulsion into a W/O emulsion and then back again.

The emulsifier’s job is to make droplet formation easier and to counteract separation. In addition to surfactants (substances contained in detergents and the like), fine solid particles also have a stabilizing effect. Mustard powder has thus long been used to stabilize mayonnaise. Both surfactants and particles aggregate at the phase boundary of the two liquids and keep the droplets from flowing together. Many commercial formulations contain surfactants as well as solid particles.

If the conditions are changed, a phase inversion can occur, converting an O/W into a W/O emulsion, for example, if more and more surfactant is added. This is no great feat. However, Bernard P. Binks and Johnny A. Rodrigues have now achieved something astonishing: a double inversion. Their system initially contains silica nanoparticles and a small quantity of a surfactant with a water-loving (hydrophilic), positively charged head and two nonpolar, water-repellent (hydrophobic) tails. The tiny silica spheres are negatively charged, hydrophilic, and easily wettable by water. In this state, they stabilize oil drops in water (O/W).

If more surfactant is added, a layer of surfactant molecules surrounds each sphere, all with their hydrophobic tails sticking out. The spheres are now covered with a hydrophobic layer and are no longer wettable. They stop repelling each other and begin to aggregate. This causes the emulsion to undergo its first inversion into W/O. If further surfactant is then added, these additional molecules lodge tail-to-tail with those already surrounding the spheres. This forms a double layer around the spheres, with the positively charged heads of the second surfactant layer now sticking out. The spheres thus once again have a charged, hydrophilic surface and again stabilize oil droplets in water. The emulsion undergoes its second inversion back into O/W.

Source: John Wiley & Sons

Explore further: A simple way to make and reconfigure complex emulsions (w/ Video)

Related Stories

New method to create monomodal, mesoporous metal oxides

February 21, 2014

A team of UConn chemists has discovered a new way of making a class of porous materials that allows for greater manufacturing controls and has significantly broader applications than the longtime industry standard.

Liquid crystal turns water droplets into 'gemstones'

January 21, 2014

(Phys.org) —Liquid crystals are remarkable materials that combine the optical properties of crystalline solids with the flow properties of liquids, characteristics that come together to enable the displays found in most ...

Tiny bubbles hold big promise for NMR/MRI

July 16, 2013

(Phys.org) —Berkeley Lab researchers have shown that tiny bubbles carrying hyperpolarized xenon gas hold big promise for NMR (nuclear magnetic resonance) and its sister technology, MRI (Magnetic Resonance Imaging), as these ...

Bottom-up process for making dodecane-in-water nanoemulsions

May 15, 2013

(Phys.org) —A new process for generating nanometer-scale oil droplets in water has been reported in the journal Angewandte Chemie by Japanese researchers, who have developed a technique they named MAGIQ (monodisperse nanodroplet ...

Scientists discover novel way to 'heal' defects in materials

October 2, 2012

(Phys.org)—In a paper just published in Nature Materials, a team of researchers that includes William T.M. Irvine, assistant professor in physics at the University of Chicago, has succeeded in creating a defect in the structure ...

Recommended for you

New blow for 'supersymmetry' physics theory

July 27, 2015

In a new blow for the futuristic "supersymmetry" theory of the universe's basic anatomy, experts reported fresh evidence Monday of subatomic activity consistent with the mainstream Standard Model of particle physics.

A cataclysmic event of a certain age

July 27, 2015

At the end of the Pleistocene period, approximately 12,800 years ago—give or take a few centuries—a cosmic impact triggered an abrupt cooling episode that earth scientists refer to as the Younger Dryas.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.