Drexel Researcher Develops Sensor to Test for E. coli in 10 Minutes

June 20, 2007
Drexel Researcher Develops Sensor to Test for E. coli in 10 Minutes

The latest outbreak of E. coli cases — now in 12 Western states and involving 6 million pounds of fresh and frozen meat — shows a need for better detection in food processing exists.

Dr. Raj Mutharasan, a professor of chemical engineering at Drexel University, has developed over the past five years sensor technology that can test for E. coli bacteria in just 10 minutes. He is working with a company that has licensed Drexel’s technology to commercialize the device and expects it to be in the hands of food-safety experts soon.

The sensor could also have wide applications in medical diagnostic testing (prostate cancer) and monitoring for biothreat agents (anthrax). In medical testing, the sensor can be used to analyze the four most widely tested fluids: blood, urine, sputum and spinal fluid.

The standard detection process of E. coli bacteria in food processing requires about 24 hours and involves a trip to a laboratory. Mutharasan’s sensor can be contained in a handheld device that is accurate and easy to use.

No direct test for minute amounts of proteins exists on the market. A study published in the April 1, 2007, issue of Analytical Chemistry using Mutharasan’s sensor detected E. coli in ground beef at some of the lowest concentrations ever reported.

Unlike salmonella, for example, no Food and Drug Admistration requirement to test food for E. coli exists. Requirements are in place, however, to ensure proper food-manufacturing practices are met to help avoid contamination, says Dr. Stanley Segall, Drexel professor emeritus of food science and nutrition.

E. coli outbreaks have increased in recent years because reporting systems have been more efficient and effective and food production has become more centralized, with distribution spanning the country in rapid time frames, Segall says.

The near-prototype sensor Mutharasan has developed contains a sensitivity of four cells per milliliter of solution. The sensor uses E. coli antibodies to detect the bacteria in a way similar to how our bodies work. Those antibodies are affixed to a narrow sliver of glass. A ceramic layer, attached to the other end of the glass, generates voltage in response to applied mechanical stress.

The sensor affixed with antibodies against E. coli can detect as low as four cells per milliliter of solution. A voltage is applied to a ceramic layer, causing it to expand and contract, vibrating the glass sliver. The sensor detects changes in the glass sliver’s resonate frequency (the point where vibration is the greatest) and determines the presence and concentration of E. coli bacteria.

Because the same principles of resonate frequency apply, the sensor can test liquid and solid samples. The sensor can be equipped with a range of antibodies to detect many pathogens or it can be homozygous with a single antibody, enabling the sensor to detect even the smallest amounts of the harmful bacteria.

Source: Drexel University

Explore further: Researcher Develops Sensor to Detect E.coli

Related Stories

Researcher Develops Sensor to Detect E.coli

September 24, 2006

As the Food and Drug Administration takes days to track down the source of the E. coli outbreak, Dr. Raj Mutharasan is optimizing a sensor that can enable growers to do the job themselves in a few minutes.

PANTHER sensor quickly detects pathogens

March 4, 2008

Researchers at MIT Lincoln Laboratory have developed a powerful sensor that can detect airborne pathogens such as anthrax and smallpox in less than three minutes.

'Hormone therapy' for food poisoning bacteria

March 28, 2010

Pathogenic bacteria in the gut recognise their surroundings by detecting hormone signals from the host, which can prompt them to express lethal toxins. Intercepting these hormonal messages could be a better way to treat serious ...

Recommended for you

Roboticists learn to teach robots from babies

December 1, 2015

Babies learn about the world by exploring how their bodies move in space, grabbing toys, pushing things off tables and by watching and imitating what adults are doing.

Getting into the flow on the International Space Station

December 1, 2015

Think about underground water and gas as they filter through porous materials like soil and rock beds. On Earth, gravity forces water and gas to separate as they flow through the ground, cleaning the water and storing it ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.