DNA damage to stem cells is central to ageing

Jun 08, 2007

DNA damage is a major mechanism behind the loss of adult stem cells over time, according to a Nature paper by Oxford University researchers and international colleagues.

The finding has implications for the use of adult stem cells in transplantation and, more broadly, for understanding the process of ageing itself, since stem cells are essential for repairing and regenerating tissue.

An adult stem cell is a cell that has not yet differentiated (specialised): it can become any one of various cell types. Adult stem cells can differentiate to yield the major specialised cell types of whatever tissue or organ they are found in. They also renew themselves. This makes them crucial for long-lived multicellular organisms like animals, which depend on tissue replenishment from adult stem cells for their continued existence.

Stem cells must be maintained throughout life with a minimum of mutations to their DNA, since these mutations could stop the stem cell working or even kill it. Professor Richard Cornall from the University of Oxford and colleagues studied stem cells that generate blood, found in bone marrow.

In order to establish the importance of DNA damage and repair, they looked at a mouse which lacked an enzyme crucial for DNA repair (DNA ligase IV, or ‘Lig4’).

The Lig4 enzyme repairs so-called ‘double-strand breaks’: breaks in the DNA double helix caused by oxidation and radiation that we are exposed to all the time. In the mice lacking Lig4, repairs were inefficient, and the DNA of the stem cells became damaged much faster, leading to loss of stem cells.

‘As we get older, it is known that our capacity to regenerate blood and other cells diminishes,’ says Professor Cornall. ‘In the mouse without Lig4, this process was accelerated. This shows how important DNA repair is in slowing down the loss of stem cells. In other words, DNA damage can be an important mechanism in tissue ageing.’

The findings have implications for the process of ageing itself. ‘It has been suggested that accumulation of DNA damage, leading to loss of adult stem cells, is a principal mechanism behind ageing,’ says Professor Cornall. ‘Our findings lend weight to that theory.’

He adds: ‘Our findings also imply that inherited or environmental factors that increase oxidative DNA damage may be key determinants of the rate of tissue ageing.’

The findings are also important for the use of adult stem cells in transplants. The success of cultivating and transplanting stem cells, for example for use in leukaemia patients, will depend on how often DNA breaks occur and how well they are repaired.

Source: University of Oxford

Explore further: Life-prolonging protein could inhibit ageing diseases

Related Stories

NSA winds down once-secret phone-records collection program

23 hours ago

The National Security Agency has begun winding down its collection and storage of American phone records after the Senate failed to agree on a path forward to change or extend the once-secret program ahead of its expiration ...

Pipeline that leaked wasn't equipped with auto shut-off

23 hours ago

The pipeline that leaked thousands of gallons of oil on the California coast was the only pipe of its kind in the county not required to have an automatic shut-off valve because of a court fight nearly three ...

Recommended for you

Life-prolonging protein could inhibit ageing diseases

May 29, 2015

Researchers have found a molecule that plays a key link between dietary restriction and longevity in mammals. This discovery may lead to the development of new therapies to inhibit age-related diseases.

How sleep helps us learn and memorize

May 28, 2015

Sleep is important for long lasting memories, particularly during this exam season. Research publishing in PLOS Computational Biology suggests that sleeping triggers the synapses in our brain to both streng ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.