Helping chlorine-eating bacteria clean up toxic waste

June 20, 2007

Cornell researchers hope to learn how certain bacteria that break down pollutants do their job and then to make them more effective in cleaning up toxic wastes.

Bacteria called Dehalococcoides ethenogenes, discovered in Ithaca sewage sludge in 1997 by James Gossett, Cornell professor of civil and environmental engineering, and isolated and studied by Stephen Zinder, Cornell professor of microbiology, are now in wide use to detoxify such carcinogenic chemicals as perchloroethylene (PCE) and trichloroethylene (TCE). They do this by removing chlorine atoms from molecules and leaving less-toxic compounds behind.

But D. ethenogenes strains work well at some sites and not so well at others, and nobody knows for sure why. In fact, very little is understood about how these organisms live and breathe. Normal laboratory procedures haven't provided enough answers, because the bacteria are hard to grow in a petri dish, said Ruth Richardson, Cornell assistant professor of civil and environmental engineering, who is following up on Gossett's and Zinder's work, in continued collaboration with them.

She is partnering with Gene Network Sciences (GNS), a firm specializing in computer simulation of biochemical processes, to create computer models of the inner workings of the bacterium. The project is funded by a three-year, $381,000 grant from the Department of Defense, which has some 6,000 toxic-dump sites of its own to clean up.

Richardson explained that in the field "the bacteria sometimes start and then stop. We might improve conditions for the organisms." For example, she said, it has been found that Dehalococcoides needs vitamin B-12, so the vitamin is added to cultures that are injected into cleanup sites. The bacterium also grows better in a mixed community with other kinds of bacteria. "There are some factors it needs from other organisms, and we don't know yet what they are," she said.

Her laboratory will test the D. ethenogenes strains under a variety of different conditions, such as exposing them to different chlorinated compounds one at a time, varying the environment or the nutrients supplied, and then observing which genes are expressed and what proteins are manufactured. The data will go to GNS, which will try to build computer models of how the bacteria's proteins work together under each condition and whether the pathway for each condition is the same for PCE and TCE, and if not, what steps they have in common.

It will be an "iterative process," Richardson said. If a model shows that changing a particular condition produces a particular result, the lab will try it out and see if the result matches the model. Eventually, Richardson said, some commonalities should appear.

"There will be a suite of models, and we can highlight features that are common across several models," she said. "As we develop the model, we can begin to look at the genomes of other strains of Dehalococcoides. If genes that are important in our strain are found in others ... then we can do the same experiments with the others." Finding which genes are at work with which pollutants might lead to understanding how to remediate other kinds of pollutants, such as PCBs, dioxins, chlorobenzenes or chlorophenols.

Richardson, who grew up in the Hudson River Valley, notes that such pollutants are common in the river's harbors. "There are still thousands of sites around the country that need to be cleaned up," she said. "Ithaca has three or four, and that's not atypical."

Source: Cornell University

Explore further: Olympic teams to swim, boat in Rio's filth

Related Stories

Olympic teams to swim, boat in Rio's filth

July 30, 2015

Athletes competing in next year's Summer Olympics here will be swimming and boating in waters so contaminated with human feces that they risk becoming violently ill and unable to compete in the games, an Associated Press ...

Researchers provide new details about sea stars' immunity

July 28, 2015

A study led by a University of Texas at Arlington graduate student examining sea stars dying along the West Coast provides new clues about the starfish's immune response and its ability to protect a diverse coastal ecosystem.

Recommended for you

A cataclysmic event of a certain age

July 27, 2015

At the end of the Pleistocene period, approximately 12,800 years ago—give or take a few centuries—a cosmic impact triggered an abrupt cooling episode that earth scientists refer to as the Younger Dryas.

New blow for 'supersymmetry' physics theory

July 27, 2015

In a new blow for the futuristic "supersymmetry" theory of the universe's basic anatomy, experts reported fresh evidence Monday of subatomic activity consistent with the mainstream Standard Model of particle physics.

Dense star clusters shown to be binary black hole factories

July 29, 2015

The coalescence of two black holes—a very violent and exotic event—is one of the most sought-after observations of modern astronomy. But, as these mergers emit no light of any kind, finding such elusive events has been ...

Image: Hubble sees a dying star's final moments

July 31, 2015

A dying star's final moments are captured in this image from the NASA/ESA Hubble Space Telescope. The death throes of this star may only last mere moments on a cosmological timescale, but this star's demise is still quite ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.