Carbon nanotube injectors probe living cells without damage

June 20, 2007 By Lisa Zyga feature
Carbon nanotube injectors probe living cells without damage
Left: The CNT nanoinjector tip, conjugated with streptavidin-coated quantum dots (inset: larger view of the needle). Right: Quantum dots are shown in red after being injected into a living human HeLa cell (the dark shape is the AFM cantilever). Image credit: Xing Chen, et al. ©PNAS 2007.

In order to investigate the processes that go on inside a single human cell—or even specific subcellular compartments—researchers need a device that is small and controlled enough to pass through the delicate cell membrane. Carbon nanotubes (CNTs), with their needle-like geometry, high elasticity and strength, have recently shown that they’re up to the task.

Scientists Xing Chen, Andrax Kis, Alex Zettl, and Carolyn Bertozzi from the University of California at Berkeley and the Lawrence Berkeley National Laboratory have recently found that a CNT-based “nanoinjector” is also the first to penetrate a cell with no membrane damage, even after hour-long, repeated use. Previous bulkier methods consistently damaged the membrane after just a few seconds of penetration.

“This is the first cell injector with temporal and spatial control on the nanometer scale that can deliver a discrete number of molecules and doesn't damage the cell membrane,” Chen told PhysOrg.com. “The less perturbation [to a cell], the better for the systems studied. In the case of cellular delivery/injection, if too much damage is made to the cell, the cell dies.”

The scientists predict that this advantage of the nanoinjector will play a central role in experimental cell biology with its ability to overcome the plasma membrane barrier. The nanoinjector also offers the opportunity for injecting cargo such as DNA, RNA, polymers, bacteria and other particles.

The key to the CNT’s success is simply its small size. With a diameter of 1 nanometer, about the same as a single protein, a CNT needle pierces a hole so small that it is quickly healed by lipid diffusion (the passive movement of particles to reach a state of equilibrium).

The setup consists of a multiwalled CNT attached to an atomic force microscope (AFM) tip. The AFM controls the needle’s displacement with nanometer resolution, as well as applies and monitors forces on the cell membrane.

In the scientists’ experiment, the CNT’s cargo consisted of quantum dots, which are fluorescent nanoparticles that provide high visibility to enable single particle tracking inside a cell. For loading and releasing this cargo, the scientists used a disulfide-based compound. In the oxidizing environment outside the cell, the disulfide is stable and links to the quantum dots; in the reducing environment inside the cell, the disulfide bonds are cleaved, releasing the quantum dots.

The scientists demonstrated this nanoinjection in cultured HeLa cells, which are human cervical epithelial cancer cells. After about 15-30 minutes of the nanoneedle positioned inside a targeted cell, the scientists observed 50-100 nanometer clusters of quantum dots using a fluorescence microscope.

Using single particle tracking, the scientists could also directly characterize the motions of the quantum dots inside the cell, which agreed with previous measurements. The long duration and repeated injection in living cells will hopefully make this biocompatible nanoinjector useful for scientists’ future investigations and delivery into single cells.

“Gene delivery is definitely one of the potential applications,” Chen said. “In addition, this new technique opens the door for studying a variety of intracellular processes.”

Citation: Chen, Xing, Kis, Andras, Zettl, A., and Bertozzi, Carolyn R. “A cell nanoinjector based on carbon nanotubes.” Proceedings of the National Academy of Sciences. 8218-8222, May 15, 2007, vol. 104, no. 20.

Copyright 2007 PhysOrg.com.
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of PhysOrg.com.

Explore further: Light-emitting glass to enhance solar panel efficiency

Related Stories

Light-emitting glass to enhance solar panel efficiency

August 17, 2016

Researchers from ITMO University have developed optical luminescent glass that emits visible light under ultraviolet radiation. Due to this property, the new material has applications for increasing the efficiency and lifetime ...

Researchers uncover new light harvesting potentials

July 14, 2016

Researchers for the first time have found a quantum-confined bandgap narrowing mechanism where UV absorption of the graphene quantum dots and TiO2 nanoparticles can easily be extended into the visible light range.

Scientists engineer tunable DNA for electronics applications

June 20, 2016

DNA may be the blueprint of life, but it's also a molecule made from just a few simple chemical building blocks. Among its properties is the ability to conduct an electrical charge, making one of the hottest areas in engineering ...

Researchers outsmart the biological uncertainty principle

July 12, 2016

Anyone who has ever taken a group photo will be familiar with the problem: If everyone is constantly running around, it's almost impossible to get a sharp photo. Cell biologists who want to visualize molecular processes inside ...

A little impurity makes nanolasers shine

July 5, 2016

Scientists at ANU (The Australian National University) have improved the performance of tiny lasers by adding impurities, in a discovery which will be central to the development of low-cost biomedical sensors, quantum computing, ...

Recommended for you

Graphene under pressure

August 25, 2016

Small balloons made from one-atom-thick material graphene can withstand enormous pressures, much higher than those at the bottom of the deepest ocean, scientists at the University of Manchester report.

Designing ultrasound tools with Lego-like proteins

August 25, 2016

Ultrasound imaging is used around the world to help visualize developing babies and diagnose disease. Sound waves bounce off the tissues, revealing their different densities and shapes. The next step in ultrasound technology ...

Nanovesicles in predictable shapes

August 25, 2016

Beads, disks, bowls and rods: scientists at Radboud University have demonstrated the first methodological approach to control the shapes of nanovesicles. This opens doors for the use of nanovesicles in biomedical applications, ...

'Artificial atom' created in graphene

August 22, 2016

In a tiny quantum prison, electrons behave quite differently as compared to their counterparts in free space. They can only occupy discrete energy levels, much like the electrons in an atom - for this reason, such electron ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.