'Blown Bubble' Method Disperses Nanostructures Over Large Areas

June 22, 2007 By Laura Mgrdichian feature
'Blown Bubble' Method Disperses Nanostructures Over Large Areas
A blown-bubble film (bubble diameter is 35 cm, height is 50 cm) that has coated the surface of two silicon wafers. Credit: Charles Lieber, et al.

Researchers from Harvard University and the University of Hawaii at Manoa recently announced a new method for organizing nanowires and carbon nanotubes across large areas: blowing bubbles.

Bubble blowing, or blown-film extrusion, is a well developed technique used in industry, such as in plastic-film manufacturing, where polymers are melted and inflated into balloons that can be collapsed and cut. However, this is the first time that this approach has been used in nanoscience research.

The scientists suspended each type of nanostructure in a polymer-based liquid and created large bubbles using a circular die and controlled pressure. The very thin wall of each bubble (a few hundred nanometers thick) contains an even, well organized and aligned distribution of nanostructures. When an expanding bubble is placed against a surface, the bubble wall is transferred to it. This allows a thin film with a controllable nanostructure density and pattern to be deposited onto relatively large wafers, plastic sheets, and curved surfaces.

“This ability is necessary for many proposed optical and electronic applications for nanowires and nanotubes but, so far, other methods cannot be extended to the large-scale assembly of nanowires and nanotubes on both flexible and rigid substrates,” said Harvard scientist Charles Lieber, the paper's corresponding author, to PhysOrg.com.

Lieber and his colleagues worked with two types of nanowires – silicon and cadmium sulfide – and both single- and multi-walled carbon nanotubes. In each case, they were able to produce bubbles with diameters greater than 25 centimeters (cm) and heights greater than 50 cm. The films were transferred to various surfaces: a silicon wafer 20 cm in diameter, a flexible plastic sheet with dimensions of 22.5 cm x 30 cm, and a half cylinder 2.5 cm in diameter and 6 cm long.

The researchers say that by using larger dies and learning how to gain greater control of the expansion process they could potentially create bubbles up to a few meters in dimension as is achieved in today’s plastic-film industry. This means that films larger than one meter across could be produced and transferred, opening up the potential of new large-area electronics applications using nanowires and nanotubes.

Lieber and his colleagues illustrated this potential by using a silicon-nanowire blown-bubble film to create a large array of nanowire-based transistors on 7.5-cm-diameter plastic sheets. The transistors' properties and performance compare to, and often exceed, those created using other assembly methods. By using higher performance nanowires, the scientists expect that significant improvements are possible.

“Our method has the added advantage of being a more straightforward and efficient approach than other techniques in terms of making functional nanodevices over large areas,” said Lieber.

The scientists do concede that the nanowire density and wire-to-wire distance of the silicon-nanowire film currently achieved are “modest,” but can be further increased by preparing a higher concentration polymer suspension of nanostructures. However, they say, those values are still useful for some applications, such as biological sensor arrays and display screens.

This research is discussed in the May 27 online edition of Nature Nanotechnology.

Citation: Guihua Yu, Anyuan Cao and Charles M. Lieber, Nature Nanotechnology, 2007, 2, 372-377.

Copyright 2007 PhysOrg.com.
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of PhysOrg.com.

Explore further: Deep insights from surface reactions

Related Stories

Deep insights from surface reactions

November 30, 2016

Things that happen on the surface are often given short shrift compared to what goes on inside. But when it comes to chemical reactions, what occurs on the surface can mean the difference between a working material and one ...

Scientists explore mash-up of vacuum tube and MOSFET

June 25, 2014

Thumb-size vacuum tubes that amplified signals in radio and television sets in the first half of the 20th century might seem nothing like the metal-oxide semiconductor field-effect transistors (MOSFETs) that dazzle us with ...

From Nanowires to Nanotubes

September 28, 2006

Hollow nanocrystals that can function as highly-efficient catalysers or transport containers for chemical agents are in great demand nowadays. Scientists from the Max Planck Institute of Microstructure Physics have created ...

Recommended for you

New aspect of atom mimicry for nanotechnology applications

December 2, 2016

In nanotechnology control is key. Control over the arrangements and distances between nanoparticles can allow tailored interaction strengths so that properties can be harnessed in devices such as plasmonic sensors. Now researchers ...

Engineers create prototype chip just three atoms thick

November 29, 2016

For more than 50 years, silicon chipmakers have devised inventive ways to switch electricity on and off, generating the digital ones and zeroes that encode words, pictures, movies and other forms of data.

Nanotechnology a 'green' approach to treating liver cancer

November 29, 2016

According to the American Cancer Society, more than 700,000 new cases of liver cancer are diagnosed worldwide each year. Currently, the only cure for the disease is to surgically remove the cancerous part of the liver or ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.