Biotech breakthrough could end biodiesel's glycerin glut

Jun 26, 2007

With U.S. biodiesel production at an all-time high and a record number of new biodiesel plants under construction, the industry is facing an impending crisis over waste glycerin, the major byproduct of biodiesel production. New findings from Rice University suggest a possible answer in the form of a bacterium that ferments glycerin and produces ethanol, another popular biofuel.

"We identified the metabolic processes and conditions that allow a known strain of E. coli to convert glycerin into ethanol," said chemical engineer Ramon Gonzalez. "It's also very efficient. We estimate the operational costs to be about 40 percent less that those of producing ethanol from corn."

Gonzalez said the biodiesel industry's rapid growth has created a glycerin glut. The glut has forced glycerin producers like Dow Chemical and Procter and Gamble to shutter plants, and Gonzalez said some biodiesel producers are already unable to sell glycerin and instead must pay to dispose of it.

"One pound of glycerin is produced for every 10 pounds of biodiesel," said Gonzalez, Rice's William Akers Assistant Professor in Chemical and Biomolecular Engineering. "The biodiesel business has tight margins, and until recently, glycerin was a valuable commodity, one that producers counted on selling to ensure profitability."

Researchers across the globe are racing to find ways to turn waste glycerin into profit. While some are looking at traditional chemical processing -- finding a way to catalyze reactions that break glycerin into other chemicals -- others, including Gonzalez, are focused on biological conversion. In biological conversion, researchers engineer a microorganism that can eat a specific chemical feedstock and excrete something useful. Many drugs are made this way, and the chemical processing industry is increasingly finding bioprocessing to be a "greener," and sometimes cheaper, alternative to chemical processing.

In a review article in the June issue of Current Opinion in Biotechnology, Gonzalez points out that very few microorganisms are capable of digesting glycerin in an oxygen-free environment. This oxygen-free process -- known as anaerobic fermentation -- is the most economical and widely used process for biological conversion.

"We are confident that our findings will enable the use of E. coli to anaerobically produce ethanol and other products from glycerin with higher yields and lower costs than can be obtained using common sugar-based feedstocks like glucose and xylose," Gonzalez said.

Source: Rice University

Explore further: From plant matter to jet fuel: Streamlining the production of ultraclean fuel

Related Stories

Q&A: Why are antibiotics used in livestock?

5 hours ago

Wal-Mart, the world's biggest retailer, is the latest company to ask its suppliers to curb the use of antibiotics in farm animals. Here's a rundown of what's driving the decision: ...

Recommended for you

Architects to hatch Ecocapsule as low-energy house

53 minutes ago

Where people call home depends on varied factors, from poverty level to personal philosophy to vanity to community pressure. Ecocapsule appears to be the result of special factors, a team of architects applying ...

Power to the batteries

May 22, 2015

Better solar panels and wind turbines are important to helping ensure a low-carbon future. But they are not enough. The energy from these intermittent sources must be stored, managed, converted and accessed ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.