Autism-related Proteins Control Nerve Excitability, Researchers Find

Jun 20, 2007
Autism-related Proteins Control Nerve Excitability, Researchers Find
A research team that included (from left) Drs. Jay Gibson, associate professor of neuroscience, Ege Kavalali, associate professor of neuroscience and physiology, and Thomas Südhof, chairman of neuroscience, has discovered that two proteins implicated in autism control the strength and balance of nerve-cell connections. Credit: UT Southwestern Medical Center

Two proteins that are implicated in autism have been found to control the strength and balance of nerve-cell connections, researchers at UT Southwestern Medical Center have found.

The proteins, which serve to physically link nerve cells together, were discovered more than a decade ago by UT Southwestern scientists, but their function has been unclear.

In the new study, which appears in the June 21 edition of the journal Neuron, the researchers found that one protein increases the excitability of nerve cells, while the other inhibits cell activity. Most importantly, these effects depended on how often the cells fired.

The activity levels of neurons play a vital role during normal brain development in children. Active connections become stronger and survive to adulthood, while inactive ones disappear.

Autism is believed to involve an imbalance of excitatory and inhibitory nerve connections, a theory supported by this study, said Dr. Ege Kavalali, associate professor of neuroscience and physiology at UT Southwestern and an author of the paper.

“Mutations in these proteins have recently been linked to certain varieties of autism,” Dr. Kavalali said. “This work provides clear insight into how the proteins function. We can never design a therapeutic strategy without knowing what these mutations do.”

The proteins are called neuroligin-1 and neuroligin-2. At the junction of two nerve cells, called a synapse, the proteins stick out from the surface of the cell that receives a signal from the first cell. The neuroligins bind to other molecules on the first cell, thus creating a physical bridge across the synapse.

In some cases, a signal from the first cell excites the second cell, while at other synapses, the signal inhibits the second cell.

Infants are born with far more synapses, both excitatory and inhibitory, than adults end up with. In a process called pruning, synapses that are inactive during development disappear while active ones proliferate.

In the current study, the researchers genetically manipulated rat neurons in culture so that the cells created too much neuroligin-1. The cells developed twice the usual number of synapses, raising the question of whether neuroligin-1 contributed to the formation of additional synapses or contributed to the failure of existing ones to be pruned. Similar tests showed that excess neuroligin-2 also led to more synapses, but in this case, the synapses were inhibitory.

When the cells that overexpressed either neuroligin-1 or neuroligin-2 were chemically prevented from firing, they did not develop excess synapses, despite the presence of the respective proteins.

Together, the tests indicate that nerve cells with excess neuroligins developed extra synapses only when those cells are allowed to fire.

“The two neuroligins have complementary roles under normal conditions, with neuroligin-1 increasing the excitatory links between nerve cells, and neuroligin-2 increasing the number of inhibitory links, creating a balance,” Dr. Kavalali said. “In both cases, the neuroligins are not necessary for creating the synapses, but they have a role in determining which synapses make it in the long run, and thus setting up how responsive the nerve cells are.”

Because mutations in neuroligins occur in some people with autism spectrum disorders, the researchers also engineered a mutation in neuroligin-1 comparable to one observed in humans and introduced the mutant neuroligins into rat neurons.

“The nerve cells carrying the mutant neuroligin showed a dramatic decrease in the number of synapses and a more than twofold decrease in excitability, showing that the mutation interferes with the stability of the synapses,” Dr. Kavalali said.

Source: UT Southwestern Medical Center

Explore further: Life-prolonging protein could inhibit ageing diseases

Related Stories

Fossil ancestor shows sharks have a bony past

1 hour ago

Most people know that sharks have a distinctive, all-cartilage skeleton, but now a fossil from Western Australia has revealed a surprise 'missing link' to an earlier, more bony form of the fish.

Cheetah robot lands the running jump (w/ Video)

1 hour ago

In a leap for robot development, the MIT researchers who built a robotic cheetah have now trained it to see and jump over hurdles as it runs—making this the first four-legged robot to run and jump over ...

Heat accelerates dry in California drought

1 hour ago

Although record low precipitation has been the main driver of one of the worst droughts in California history, abnormally high temperatures have also played an important role in amplifying its adverse ef ...

Recommended for you

Life-prolonging protein could inhibit ageing diseases

May 29, 2015

Researchers have found a molecule that plays a key link between dietary restriction and longevity in mammals. This discovery may lead to the development of new therapies to inhibit age-related diseases.

How sleep helps us learn and memorize

May 28, 2015

Sleep is important for long lasting memories, particularly during this exam season. Research publishing in PLOS Computational Biology suggests that sleeping triggers the synapses in our brain to both streng ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.