Alternative breast imaging techniques sort abnormal from normal tissue

June 5, 2007

Dartmouth physicians and engineers have published a paper with results from a five-year project testing three new imaging techniques to examine breast abnormalities, including cancer. The study finds that the new methods of electromagnetic imaging offer a high contrast and the ability to distinguish between healthy breast tissue and abnormal tissue. Their study appears in the May 2007 issue of Radiology, the journal of the Radiological Society of North America.

The interdisciplinary team includes researchers from Dartmouth's Thayer School of Engineering and Dartmouth Medical School working with experts at the Norris Cotton Cancer Center and the Department of Radiology at Dartmouth-Hitchcock Medical Center (DHMC). The electromagnetic techniques are electrical impedance spectral imaging (EIS), microwave imaging spectroscopy (MIS), and near infrared (NIR) spectral imaging.

A total of 150 women participated in this study, 97 of whom had an abnormal conventional breast image that was suspicious or highly suggestive of malignancy and were scheduled for a biopsy. The women with abnormal breast images underwent electromagnetic exams prior to biopsy. The researchers compared the abnormal area with the background breast tissue and with a mirror image area in the opposite breast and correlated the data with the biopsy findings. Further analysis led the researchers to determine that the new imaging techniques provided an increase in contrast between 150 to 200 percent to discriminate between breast cancer and benign tissue.

“We put our new imaging techniques to the test to quantify their effectiveness,” said Steven Poplack, associate professor of radiology and OB/GYN at Dartmouth Medical School, and co-director for breast imaging/mammography at DHMC, and the lead author of the paper. “Our results show the potential power of using a variety of imaging techniques to get the best possible view of what’s going on in the breast tissue.”

Specifically, the three techniques demonstrated significant differences in region-of-interest image summaries of normal versus abnormal breasts for EIS, across diagnostic groups for NIR, and for MIS when analysis was restricted to lesions larger than one centimeter. The electromagnetic imaging modalities appeared even more accurate when all are used in concert.

EIS: This painless test uses a very low voltage electrode system to examine how the breast tissue conducts and stores electricity. Living cell membranes carry an electric potential that affect the way a current flows, and different cancer cells have different electrical characteristics.

MIS: This exam involves the propagation of very low levels (1,000 times less than a cell phone) of microwave energy through breast tissue to measure electrical properties. This technique is particularly sensitive to water. Generally, tumors have been found to have more water and blood than regular tissue.

NIR: Infrared light is sensitive to blood, so by sending infrared light through breast tissue with a fiber optic array, the researchers are able to locate and quantify regions of oxygenated and deoxygenated hemoglobin. This might help detect early tumor growth and characterize the stage of a tumor by learning about its vascular makeup.

Source: Dartmouth College

Explore further: New approach to mammograms could improve reliability

Related Stories

New approach to mammograms could improve reliability

September 16, 2015

Detecting breast cancer in women with dense mammary tissues could become more reliable with a new mammogram procedure that researchers have now tested in pre-clinical studies of mice. In their report in the journal ACS Nano, ...

New ultrasound sensors for improved breast cancer screening

July 29, 2015

The first prototype ultrasound sensors for a new improved breast screening technique have been developed as part of a collaboration between the National Physical Laboratory (NPL), University Hospitals Bristol (UHB), North ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

( -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.