Color vision drove primates to develop red skin and hair, study finds

May 24, 2007

You might call it a tale of "monkey see, monkey do." Researchers at Ohio University have found that after primates evolved the ability to see red, they began to develop red and orange skin and hair.

Humans, apes and Old World monkeys, such as macaques and leaf monkeys, all have trichromatic vision, which allows these primates to distinguish between blue, green and red colors. Primatologists have disagreed about whether this type of color vision initially evolved to help early primates forage for ripe fruit and young, red leaves among green foliage or evolved to help them select mates.

Now a new study published online this week in American Naturalist by Ohio University researchers Andre Fernandez and Molly Morris rules out an initial advantage for mating and suggests that red-color vision evolved for non-social purposes, possibly foraging. But once developed, trichromaticism drove the evolution of red skin and hair through sexual selection.

Fernandez, the study's lead author, first began to question the strict correlation of food choice and color vision while studying howler monkeys in Costa Rica. He recently compiled data on the color vision, social and sexual habits and red skin and pelage of 203 different primate species.

The researchers then used a phylogenetic tree representing the evolutionary relationships among all the primate species under study to test hypotheses about the order in which the traits of red color vision, gregariousness (highly social behavior) and red coloring evolved. By comparing the traits of individual species in this evolutionary context, Fernandez and Morris could statistically deduce the probability of their ancestors having the same traits, as well if any of the traits were correlated with one another.

They found that the species that could discern red and orange hues were more likely to develop red and orange skin and hair, as well as highly social habits that make it easier to visually compare mates. In fact, the more social the trichromats are, the more red coloring they show.

"Neuroscience research has found some evidence of a perceptual bias for more brilliant colors," said Fernandez, an Ohio University doctoral student. "So, it is reasonable for primates with trichromatic color vision to respond more when they see bright colors."

So while foraging may have initially sparked red color vision, the new ability was likely "recruited" for social purposes.

"It looks like red skin and hair became a sexual preference," said Morris, a fish biologist who studies how physical traits such as coloring evolve through sexual selection. "So while the benefits in terms of eating may not apply anymore, the (red-color) vision in some groups is now relevant in social terms."

Source: Ohio University

Explore further: Researchers discover new mechanism of DNA repair

Related Stories

Amplifying small motions in large motions

Jun 17, 2015

For several years now, the research groups of MIT professors of computer science and engineering William Freeman and Frédo Durand have been investigating techniques for amplifying movements captured by video ...

The wonders of bioluminescent millipedes

Jun 08, 2015

There's something inherently magical, even surreal, about seeing hundreds of glowing millipedes scattered across the ground of a sequoia grove on a moonless night in Sequoia National Park.

Jumping spiders are masters of miniature color vision

May 18, 2015

Jumping spiders were already known to see in remarkably high resolution, especially considering that their bodies are less than a centimeter long. Now, researchers reporting in the Cell Press journal Current Bi ...

Recommended for you

Researchers discover new mechanism of DNA repair

18 hours ago

The DNA molecule is chemically unstable giving rise to DNA lesions of different nature. That is why DNA damage detection, signaling and repair, collectively known as the DNA damage response, are needed.

The math of shark skin

Jul 03, 2015

"Sharks are almost perfectly evolved animals. We can learn a lot from studying them," says Emory mathematician Alessandro Veneziani.

Cuban, US scientists bond over big sharks

Jul 03, 2015

Somewhere in the North Atlantic right now, a longfin mako shark—a cousin of the storied great white—is cruising around, oblivious to the yellow satellite tag on its dorsal fin.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.