How to Spot the Speediest Black Holes

May 28, 2007

Astronomers are hunting an elusive target: rogue black holes that have been ejected from the centers of their home galaxies. Some doubted that the quarry could be spotted, since a black hole must be gobbling matter from an accretion disk in order for that matter to shine. And if a black hole is ripped from the core of its home galaxy and sent hurling into the outskirts, the thinking goes, then its accretion disk might be left behind.

New calculations by theorist Avi Loeb (Harvard-Smithsonian Center for Astrophysics) give black hole hunters a reason to hope. Loeb showed that, generically, a black hole ejected from the center of a galaxy could bring its accretion disk along for the ride and remain visible for millions of years.

"Matter in the disk is swirling around the black hole much faster than the typical black-hole ejection speed. That matter is so tightly bound that it follows the black hole like a herd of sheep around a shepherd," said Loeb.

In the scenario examined by Loeb, two galaxies collide and merge. The spinning, supermassive black holes at the core of each galaxy coalesce, emitting powerful gravitational radiation in a preferred direction. Computer simulations recently demonstrated that the net momentum carried by the radiation gives the remnant black hole a large kick in the opposite direction. The black hole recoils at speeds of up to ten million miles per hour -- fast enough to traverse an entire galaxy in a cosmically short time of only ten million years.

Although the prediction of recoiling black holes in galaxy mergers has been shown to be robust, it was unclear until Loeb's paper whether the phenomenon could have optically observable consequences. Loeb examined the question of whether the black hole could hold onto its accretion disk while being ejected. He found that as long as the gas within the disk was orbiting at a speed far greater than the black hole ejection speed, the accretion disk would follow the black hole on its journey.

Moreover, the gaseous disk should not be consumed during the earlier binary coalescence phase that precedes the ejection because the black hole binary tends to open a cavity in the disk, like a spinning blade in a food processor.

After the two black holes join to become one, the accretion disk could feed the remnant black hole for millions of years, allowing the black hole to shine brilliantly. Such black holes at cosmological distances are called quasars.

Before the black hole's fuel is exhausted, it could travel more than 30,000 light-years from the center of its galaxy. At typical cosmological distances, that would equate to a separation on the sky of about one arcsecond (the size of a dime viewed from one mile away). Such separations are challenging to detect, since the quasar's brightness may overwhelm the fainter galaxy.

The powerful release of energy by a quasar shapes the evolution of its host galaxy. Previous theoretical calculations assumed that a quasar is pinned to the center of its galaxy where most of the gas concentrates. "However, the feedback from a recoiled quasar would be distributed along its trajectory, and would resemble the visible track of a subatomic particle in a bubble chamber," commented Loeb.

His paper argues that although most of the kicked black holes would remain bound to their host galaxies, their feedback and growth would be different than previously envisioned.

"Most importantly, this work is a good motivation for observers to search for displaced quasars," added Loeb.

This work has been accepted for publication in Physical Review Lettersand is available online at

Source: the Harvard-Smithsonian Center for Astrophysics (CfA)

Explore further: Dense molecular gas disks drive the growth of supermassive black holes—Are supernova explosions the key?

Related Stories

Black hole hidden within its own exhaust

September 15, 2016

Supermassive black holes, millions to billions of times the mass of our Sun, are found at the centers of galaxies. Many of these galactic behemoths are hidden within a thick doughnut-shape ring of dust and gas known as a ...

The aligned spin of a black hole

August 1, 2016

A black hole in traditional theory is characterized by having "no hair," that is, it is so simple that it can be completely described by just three parameters, its mass, its spin, and its electric charge. Even though it may ...

How cold are black holes?

September 5, 2016

The very idea that a black hole could have a temperature strains the imagination. I mean, how can something that absorbs all the matter and energy that falls into it have a temperature? When you feel the warmth of a toasty ...

Will our black hole eat the Milky Way?

August 16, 2016

Want to hear something cool? There's a black hole at the center of the Milky Way. And not just any black hole, it's a supermassive black hole with more than 4.1 million times the mass of the Sun.

WISE, Fermi missions reveal a surprising blazar connection

August 24, 2016

Astronomers studying distant galaxies powered by monster black holes have uncovered an unexpected link between two very different wavelengths of the light they emit, the mid-infrared and gamma rays. The discovery, which was ...

Recommended for you

STEREO—10 years of revolutionary solar views

October 26, 2016

Launched 10 years ago, on Oct. 25, 2006, the twin spacecraft of NASA's STEREO mission – short for Solar and Terrestrial Relations Observatory – have given us unprecedented views of the sun, including the first-ever simultaneous ...

Image: Changing colors in Saturn's pole

October 26, 2016

These two natural color images from NASA's Cassini spacecraft show the changing appearance of Saturn's north polar region between 2012 and 2016.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.