Soft contacts designed for cone-shaped cornea

May 17, 2007

Custom-designed contacts improved vision for subjects with keratoconic eyes and offer hope of nonsurgical treatment instead of corneal transplants. University of Rochester researchers describe the custom design techniques and results of visual acuity tests in a paper published in April in Optics Letters.

Keratoconic eyes are rare but disabling. From the side, the eyes look more pointed or cone-shaped than round. The apex shift from visual axis in the cornea causes people with the condition to see halos and double and triple images. About 1 in 2,000 people suffer from the disease, usually in both eyes.

“The condition shows up in a relatively small population, but it causes huge optical problems,” says Geunyoung Yoon, assistant professor in the Departments of Ophthalmology and Biomedical Engineering, the Center for Visual Science, and the Institute of Optics. “These people have problems so severe, they can’t tolerate glasses. They can’t take laser vision correction because they have a very thin cornea around the apex, so it’s not an option. The only available treatment is to wear hard contact lenses or corneal transplant with a donored cornea if the disease is severe. And with the corneal transplant, there is a rejection rate.”

All three subjects reported their vision significantly improved with the custom-designed soft contact lenses.

The scientists tested several designs of custom lenses on the subjects’ eyes for both high-contrast and low-contrast visual acuity. They compared vision with the custom-designed soft lenses to vision with conventional lenses and rigid gas permeable lenses, or hard contact lenses. Corrections with the custom lenses resulted in an average improvement of 2.1 lines in visual acuity, or from 20/48 to 20/29, over the use of the conventional defocus and astigmatism corrections alone.

Conventional soft contact lenses do not work for keratoconic eyes, as they merely conform to the conical cornea shape. The custom-designed lenses, on the other hand, have irregular front surface profiles designed to correct for specific aberrations of the cornea and crystalline lens. The scientists designed the front profiles by measuring with wavefront sensors exactly how light enters the subjects’ eyes through the misshapen cornea. In collaboration with Bausch & Lomb, an oscillating tool lathe sculpted the front surface of the lens.

Keeping the lenses exactly in place is still a challenge, as blinking notoriously shifts contacts. The scientists used existing stabilizing techniques, such as making the lenses bottom-heavy, to coax them into correct orientation.

Source: University of Rochester

Explore further: Single-celled predator evolves tiny, human-like 'eye'

Related Stories

Single-celled predator evolves tiny, human-like 'eye'

July 1, 2015

A single-celled marine plankton evolved a miniature version of a multi-cellular eye, possibly to help see its prey better, according to University of British Columbia (UBC) research published today in Nature.

Superhydrophobic glass coating offers clear benefits

May 11, 2015

A moth's eye and lotus leaf were the inspirations for an antireflective water-repelling, or superhydrophobic, glass coating that holds significant potential for solar panels, lenses, detectors, windows, weapons systems and ...

Researchers find UV sensitivity in wide range of mammals

February 19, 2014

(Phys.org) —Biologists Ron Douglas and Glen Jeffery of City University and University College in the U.K. have upended the notion that few mammals are able to see in ultralight. In their paper published in Proceedings of ...

Terminator-style info-vision takes step towards reality

November 21, 2011

The streaming of real-time information across your field of vision is a step closer to reality with the development of a prototype contact lens that could potentially provide the wearer with hands-free information updates.

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

(PhysOrg.com) -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.