Nanocomposite labeled cancer cells can be targeted and destroyed using lasers

May 20, 2007

A nanocomposite particle can be constructed so that it has a mix of properties that would not otherwise happen in nature. By combining an organic matrix with metallic clusters that can absorb light, it is possible to incorporate such particles into cells and then destroy those targeted cells with a laser.

In a presentation at the NSTI Nanotech 2007 Conference, researchers describe work conducted at the NanoBiotechnology Center, Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, NY and the University of Michigan, Ann Arbor, MI, regarding the creation and characterization of a dendrimer nanocomposite (DNC) matrix containing silver clusters that can be used to target and destroy melanoma cancer cells.

Composite NanoDevices (CNDs), are an emerging class of hybrid nanoparticulate materials. CNDs are made from dendrimer-based polymers, for example from poly(amidoamine) [(PAMAMs)].

To visualize the device, Dr. Lajos P. Balogh says simply think of nanoscale, dense, but soft "tumbleweed," where clusters of inorganic materials (such as silver) can be trapped inside. The CND "tumbleweed" device can be made in discrete sizes, carry different electric charges and can encapsulate different materials inside. This design offers researchers a wider choice of size, surface functionality and payload than traditional small in vivo devices where the agent is conjugated directly to the surface.

A laser can be used to kill cells indiscriminately, but it is really a blunt instrument. High powered lasers do so much damage that the tissue becomes opaque to further light. Yet, lower-powered lasers do not deliver enough energy to kill cells. By labeling cells with CNDs, light absorption can be selectively and locally enhanced wherever composite nanodevices are present. Irradiation of the mix of labeled and unlabeled cells by laser light, causes tiny bubbles to form that disrupt and damage the labeled cells, but leave unlabeled cells unaffected. This technology holds promise as an alternative therapy for cancer patients.

According to Dr. Balogh, "The DNC is a multi-functional platform. Because it can carry multiple agents inside, yet present a simple outer surface to the body, it can be programmed to deliver those agents to a particular organ or tissue."

Source: Elsevier Health Sciences

Explore further: Self-replicating nanostructures made from DNA

Related Stories

Nanosilver and the future of antibiotics

May 27, 2015

Precious metals like silver and gold have biomedical properties that have been used for centuries, but how do these materials effectively combat the likes of cancer and bacteria without contaminating the ...

Protein scaffold

May 27, 2015

Right before a cell starts to divide to give birth to a daughter cell, its biochemical machinery unwinds the chromosomes and copies the millions of protein sequences comprising the cell's DNA, which is packaged ...

Researchers find 'decoder ring' powers in micro RNA

May 26, 2015

MicroRNA can serve as a "decoder ring" for understanding complex biological processes, a team of New York University chemists has found. Their study, which appears in Proceedings of the National Academy of Sciences, points ...

BioBots bioprinter to complement cutting-edge research

May 07, 2015

A high-resolution desktop 3D bioprinter that builds functional 3D living tissue was shown recently at TechCrunch Disrupt in New York. The machine is significant as a less expensive way for researchers to ...

Recommended for you

Self-replicating nanostructures made from DNA

May 28, 2015

(Phys.org)—Is it possible to engineer self-replicating nanomaterials? It could be if we borrow nature's building blocks. DNA is a self-replicating molecule where its component parts, nucleotides, have specific ...

Non-aqueous solvent supports DNA nanotechnology

May 27, 2015

Scientists around the world are using the programmability of DNA to assemble complex nanometer-scale structures. Until now, however, production of these artificial structures has been limited to water-based ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.