New method helps safeguard astronauts by forecasting space radiation hazards with up to one hour advance warnings

May 25, 2007
New method helps safeguard astronauts by forecasting space radiation hazards with up to one hour advance warnings
The one-million-degree solar corona in extreme ultraviolet light taken by the Solar and Heliospheric Observatory’s Extreme ultraviolet Imaging Telescope (EIT) in November 2003. Hazardous solar activity is only minutes away. Another SOHO instrument, the Comprehensive Suprathermal and Energetic Particle Analyzer (COSTEP), monitors space for electrons from the Sun.

One of the greatest threats to human space exploration is the sudden, unpredictable occurrence of radiation outbursts from the Sun. Researchers have long sought a method for predicting when the hazardous particles from extreme solar events, such as flares, coronal mass ejections and radio bursts, would reach humans or technology in space.

Research by Dr. Arik Posner, a research scientist at Southwest Research Institute (SwRI), has led to a new method for forecasting the appearance and intensity of solar ion events by measuring relativistic, near light-speed electrons. Relativistic electrons are highly abundant, easy to detect outside of the magnetosphere and detectable ahead of the more dangerous ions that follow. Extreme solar events create the relativistic electrons, which have characteristics that can be exploited to predict the time and intensity of later arriving ions, predominantly protons with energies more harmful to humans.

Energetic protons and heavier ions are among the main constituents of solar particle events, and their effects on the human body result in a higher cancer risk for humans in space. Exposure to these hazardous particles can also result in acute radiation syndrome, with symptoms that include vomiting, skin burns or abruption of central nervous system function. An early warning system for the detection of hazardous particles could mitigate the risk of radiation damage to astronauts by forecasting impending levels of radiation exposure.

"This method provides advance warning up to about one hour," says Posner. "Although it seems relatively short notice, the warning can be decisive in the prevention of acute radiation sickness and will help astronauts reduce their total exposure to radiation.

"Earth's magnetic field helps prevent exposure to solar particle events, but as space exploration leads humans out of this protective magnetic cocoon toward the moon and into the unprotected seas of outer space, this and other methods of space weather forecasting will become increasingly important," says Posner.

The method is currently being considered by the NASA Johnson Space Center in the design of lunar missions. "A one hour warning would reduce the odds of being caught in a solar storm outside of a lunar habitat, where astronauts are most vulnerable, by more than 20 percent compared to current methods, and allow science missions to venture to farther distances," says Dr. Francis Cucinotta, chief scientist for the NASA Space Radiation Program.

Further research could result in longer warnings and the prediction of an average time profile for solar particle events. Additionally, this forecasting method can help protect satellites and other systems in space, which can also be damaged by radiation from the Sun, by providing time for ground operators to turn off sensitive instrumentation.

The study is based on observations by the Comprehensive Suprathermal and Energetic Particle Analyzer (COSTEP) instrument on the Solar and Heliospheric Observatory. SOHO is a project of international cooperation between NASA and the European Space Agency. Since SOHO launched in 1995, COSTEP has provided a wealth of data covering an entire solar cycle, including the 2001 solar maximum, allowing for meaningful tests of this forecasting method.

The paper "Up to One-Hour Forecasting of Radiation Hazards from Solar Energetic Ion Events with Relativistic Electrons," by Dr. Arik Posner, will be published in the May issue of Space Weather, published by the American Geophysical Union.

Source: Southwest Research Institute

Explore further: NASA's reliance on outsourcing launches causes a dilemma for the space agency

Related Stories

Rosetta spacecraft sees sinkholes on comet

15 hours ago

The European Space Agency's Rosetta spacecraft first began orbiting comet 67P/Churyumov-Gerasimenko in August 2014. Almost immediately, scientists began to wonder about several surprisingly deep, almost perfectly ...

A brief history of nukes in space

Jun 26, 2015

In just a few short weeks, NASA's New Horizons spacecraft will make its historic flyby of Pluto and its moons. Solar panels are unable to operate in the dim nether regions of the outer solar system, and instead, ...

Europa—attempt no landing here, but a fly-by is fine!

Jun 25, 2015

NASA has now formally started to pack its bags for the next big discovery mission, this time heading to Jupiter's icy moon Europa. Last month NASA announced the instruments that will fly on this trip and now has ...

What is the biggest planet in the solar system?

Jun 25, 2015

Ever since the invention of the telescope four hundred years ago, astronomers have been fascinated by the gas giant of Jupiter. Between it's constant, swirling clouds, its many, many moons, and its Giant ...

Recommended for you

Crash test assesses plane emergency locator transmitters

Jul 03, 2015

The Cessna 172 airplane dangled 82 feet in the air – looking almost like it was coming in for a landing, except for the cables attaching it to a huge gantry at NASA's Langley Research Center in Hampton, ...

NASA image: Curiosity's stars and stripes

Jul 03, 2015

This view of the American flag medallion on NASA's Mars rover Curiosity was taken by the rover's Mars Hand Lens Imager (MAHLI) during the 44th Martian day, or sol, of Curiosity's work on Mars (Sept. 19, 2012). ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.