The longest carbon nanotubes you've ever seen

May 10, 2007
The longest carbon nanotubes you've ever seen
University of Cincinnati researchers have created the longest carbon nanotubes in the world. Grown in arrays that are centimeters long, the fibers catch the light as thin striations. Credit: V. Shanov, M. Schulz, University of Cincinnati

Using techniques that could revolutionize manufacturing for certain materials, researchers have grown carbon nanotubes that are the longest in the world. While still slightly less than 2 centimeters long, each nanotube is 900,000 times longer than its diameter.

The fibers--which have the potential to be longer, stronger and better conductors of electricity than copper and many other materials--could ultimately find use in smart fabrics, sensors and a host of other applications.

To grow the aligned bundles of tiny tubes, the researchers combined advantages of chemical vapor deposition (CVD), a technique for creating thin coatings that is especially common in the semiconductor industry, with a novel substrate and catalyst onto which the carbon attaches.

Supported by the National Science Foundation and the Office of Naval Research, University of Cincinnati professors Vesselin Shanov and Mark Schulz collaborated with post-doctoral researcher Yun Yeo Heung and students to develop the technique.

The researchers partnered with First Nano, a division of CVD Equipment Corp. of Ronkonkoma, N.Y., to use their laboratory and a specialized furnace called the EasyTube 3000. With the equipment, the researchers were able to break apart hydrocarbons to create a vapor of carbon-atom starting material. Within the vapor sat the new substrate--a catalyst made of alternating metal and ceramic layers atop an oxidized-silicon wafer base--which served as the foundation for growth.

"This process is revolutionary because it allows us to keep the catalyst 'alive' for a long period of time thus, providing fast and continuous transport of the carbon 'building blocks' to the carbon nanotube growth zone," said Shanov.

The carbon nanotubes are extremely long compared to predecessors--the longest is 3 millimeters beyond the prior world record. More important for manufacturing, the research team grew a 12-millimeters-thick, uniform carpet of aligned carbon nanotubes on a roughly 10-centimeter silicon substrate, opening the door for scaling-up the process.

The inventions were presented in April 2007 at the Single Wall Carbon Nanotube Nucleation and Growth Mechanisms workshop organized by NASA and Rice University. The research was supported by NSF grant 0510823, in addition to support from the Office of Naval Research through North Carolina A&T SU.

Source: National Science Foundation

Explore further: Study reveals how nanochannels select potassium ions

Related Stories

Study reveals how nanochannels select potassium ions

August 25, 2015

(Phys.org)—One of the mysteries in biology is how cells can selectively diffuse potassium across a membrane. Biological systems rely on a delicate balance between these potassium and sodium ion concentrations in the surrounding ...

Purifying contaminated water with crab shells

August 25, 2015

Copper and cadmium exist naturally in the environment, but human activities including industrial and agricultural processes can increase their concentrations. At high concentrations, copper can cause unwanted health effects ...

Focused laser power boosts ion acceleration

August 7, 2015

An international team of physicists has used carbon nanotubes to enhance the efficiency of laser-driven particle acceleration. This significant advance brings compact sources of ionizing radiation for medical purposes closer ...

Better together: graphene-nanotube hybrid switches

August 2, 2015

Graphene has been called a wonder material, capable of performing great and unusual material acrobatics. Boron nitride nanotubes are no slackers in the materials realm either, and can be engineered for physical and biological ...

Recommended for you

Electrical circuit made of gel can repair itself

August 25, 2015

(Phys.org)—Scientists have fabricated a flexible electrical circuit that, when cut into two pieces, can repair itself and fully restore its original conductivity. The circuit is made of a new gel that possesses a combination ...

Scientists grow high-quality graphene from tea tree extract

August 21, 2015

(Phys.org)—Graphene has been grown from materials as diverse as plastic, cockroaches, Girl Scout cookies, and dog feces, and can theoretically be grown from any carbon source. However, scientists are still looking for a ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.