New 'layered-layered' materials for rechargeable lithium batteries

May 07, 2007

Researchers at the Department of Energy's Argonne National Laboratory have developed a new approach to increasing the capacity and stability of rechargeable lithium-ion batteries.

The technology is based on a new material for the positive electrode that is comprised of a unique nano-crystalline, layered-composite structure.

Argonne’s strategy uses a two-component "composite" structure -- an active component that provides for charge storage is embedded in an inactive component that stabilizes the structure.

Details of the new developments will be presented on Tuesday, May 8 at the 211th Meeting of The Electrochemical Society, being held in Chicago, May 6-10.

In recent tests, the new materials yielded exceptionally high charge-storage capacities, greater than 250 mAh/g, or more than twice the capacity of materials in conventional rechargeable lithium batteries. Theories explaining the high capacity of these manganese-rich electrodes and their stability upon charge/discharge cycling will be discussed at the Electrochemical Society meeting.

In addition, by focusing on manganese-rich systems, instead of the more expensive cobalt and nickel versions of lithium batteries, overall battery cost is reduced.

Rechargeable lithium-ion batteries which would incorporate the new materials with increased capacity and enhanced stability could be expected to be used in a diverse range of applications, from consumer electronics such as cell phones and laptop computers, to cordless tools and medical devices such as cardiac pacemakers and defibrillators. In larger batteries, the technology could be used in the next generation of hybrid electric vehicles and plug-in hybrid electric vehicles.

Source: Argonne National Laboratory

Explore further: Spiders sprayed with carbon nanotubes spin superstrong webs

Related Stories

The history and development of batteries

Apr 30, 2015

Batteries are so ubiquitous today that they're almost invisible to us. Yet they are a remarkable invention with a long and storied history, and an equally exciting future.

Better batteries to break dependence on fossil fuels

Apr 29, 2015

By 2050 world population is projected to reach 10 billion people, and energy needs will double from what we require today. "We are nowhere near ready," said Héctor D. Abruña at a Charter Day Weekend lecture, ...

Layered compounds for li-ion batteries

Apr 28, 2015

Researchers from the Institute of Science, University Teknologi MARA Selangor conducted a study into the possibility of using new and cost effective compounds in Li ION battery application.

Recommended for you

Nanotechnology used to make watch case

17 hours ago

It's one thing to take a Swiss watch to Switzerland, quite another to impress the locals. Australian company Bausele recently did just that, thanks to some clever thinking at Flinders University in South ...

Two-dimensional material seems to disappear, but doesn't

May 05, 2015

(Phys.org)—When exposed to air, a luminescent 2D material called molybdenum telluride (MoTe2) appears to decompose within a couple days, losing its optical contrast and becoming virtually transparent. But when s ...

Implantable electrode coating good as gold

May 05, 2015

A team of researchers from Lawrence Livermore and UC Davis have found that covering an implantable neural electrode with nanoporous gold could eliminate the risk of scar tissue forming over the electrode's ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.