New 'layered-layered' materials for rechargeable lithium batteries

May 07, 2007

Researchers at the Department of Energy's Argonne National Laboratory have developed a new approach to increasing the capacity and stability of rechargeable lithium-ion batteries.

The technology is based on a new material for the positive electrode that is comprised of a unique nano-crystalline, layered-composite structure.

Argonne’s strategy uses a two-component "composite" structure -- an active component that provides for charge storage is embedded in an inactive component that stabilizes the structure.

Details of the new developments will be presented on Tuesday, May 8 at the 211th Meeting of The Electrochemical Society, being held in Chicago, May 6-10.

In recent tests, the new materials yielded exceptionally high charge-storage capacities, greater than 250 mAh/g, or more than twice the capacity of materials in conventional rechargeable lithium batteries. Theories explaining the high capacity of these manganese-rich electrodes and their stability upon charge/discharge cycling will be discussed at the Electrochemical Society meeting.

In addition, by focusing on manganese-rich systems, instead of the more expensive cobalt and nickel versions of lithium batteries, overall battery cost is reduced.

Rechargeable lithium-ion batteries which would incorporate the new materials with increased capacity and enhanced stability could be expected to be used in a diverse range of applications, from consumer electronics such as cell phones and laptop computers, to cordless tools and medical devices such as cardiac pacemakers and defibrillators. In larger batteries, the technology could be used in the next generation of hybrid electric vehicles and plug-in hybrid electric vehicles.

Source: Argonne National Laboratory

Explore further: Artificial muscles get graphene boost

Related Stories

Power to the batteries

12 hours ago

Better solar panels and wind turbines are important to helping ensure a low-carbon future. But they are not enough. The energy from these intermittent sources must be stored, managed, converted and accessed ...

Light-emitting fork made with sprayed LEC technology

May 20, 2015

Light-emitting electrochemical cells, LEC, is a newly invented lighting technology. In his thesis, physicist Amir Asadpoordarvish, Umeå University, shows how a LEC can be produced through spraying three ...

Recommended for you

Artificial muscles get graphene boost

10 hours ago

Researchers in South Korea have developed an electrode consisting of a single-atom-thick layer of carbon to help make more durable artificial muscles.

How to make continuous rolls of graphene

May 21, 2015

Graphene is a material with a host of potential applications, including in flexible light sources, solar panels that could be integrated into windows, and membranes to desalinate and purify water. But all ...

Carbon nanothreads from compressed benzene

May 20, 2015

A new carbon nanomaterial – the thinnest possible one-dimensional thread that still retains a diamond-like structure – was created by the controlled, slow compression and decompression of benzene. The ...

Printing 3-D graphene structures for tissue engineering

May 19, 2015

Ever since single-layer graphene burst onto the science scene in 2004, the possibilities for the promising material have seemed nearly endless. With its high electrical conductivity, ability to store energy, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.