New 'layered-layered' materials for rechargeable lithium batteries

May 7, 2007

Researchers at the Department of Energy's Argonne National Laboratory have developed a new approach to increasing the capacity and stability of rechargeable lithium-ion batteries.

The technology is based on a new material for the positive electrode that is comprised of a unique nano-crystalline, layered-composite structure.

Argonne’s strategy uses a two-component "composite" structure -- an active component that provides for charge storage is embedded in an inactive component that stabilizes the structure.

Details of the new developments will be presented on Tuesday, May 8 at the 211th Meeting of The Electrochemical Society, being held in Chicago, May 6-10.

In recent tests, the new materials yielded exceptionally high charge-storage capacities, greater than 250 mAh/g, or more than twice the capacity of materials in conventional rechargeable lithium batteries. Theories explaining the high capacity of these manganese-rich electrodes and their stability upon charge/discharge cycling will be discussed at the Electrochemical Society meeting.

In addition, by focusing on manganese-rich systems, instead of the more expensive cobalt and nickel versions of lithium batteries, overall battery cost is reduced.

Rechargeable lithium-ion batteries which would incorporate the new materials with increased capacity and enhanced stability could be expected to be used in a diverse range of applications, from consumer electronics such as cell phones and laptop computers, to cordless tools and medical devices such as cardiac pacemakers and defibrillators. In larger batteries, the technology could be used in the next generation of hybrid electric vehicles and plug-in hybrid electric vehicles.

Source: Argonne National Laboratory

Explore further: Graphene is missing ingredient to help supercharge batteries for life on the move

Related Stories

Wafer-thin material heralds future of wearable technology

July 27, 2015

UOW's Institute for Superconducting and Electronic Materials (ISEM) has successfully pioneered a way to construct a flexible, foldable and lightweight energy storage device that provides the building blocks for next-generation ...

Recommended for you

Electrical circuit made of gel can repair itself

August 25, 2015

(Phys.org)—Scientists have fabricated a flexible electrical circuit that, when cut into two pieces, can repair itself and fully restore its original conductivity. The circuit is made of a new gel that possesses a combination ...

Biological tools create nerve-like polymer network

August 24, 2015

Using a succession of biological mechanisms, Sandia National Laboratories researchers have created linkages of polymer nanotubes that resemble the structure of a nerve, with many out-thrust filaments poised to gather or send ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.