When lava flows and glaciers recede, predicting how species take over

May 23, 2007
Receding Glacier in Alaska
Primary succession following a receding glacier in Alaska. Credit: K.J. Anderson

When fire, clearcutting, lava or receding glaciers create empty habitat, species arrive to form a new ecological community. Adverse conditions -- such as isolation of the new community or an unfavorable climate -- may hinder the arrival of new species and change the pattern of succession. This study provides a framework to understand why communities mature at different rates, which is fundamental to managing clear cuts or fire.

Whenever an event such as a fire, clear cut, or lava flow creates an empty habitat, species arrive, interact, and assemble to form a new ecological community—a process known as "succession." How quickly does succession proceed?

Most ecologists might expect change to be rapid at first and then decline as the community ages, but there was no systematic analysis of this idea until recently. In a study published in the June issue of the American Naturalist, ecologist Kristina Anderson of the University of New Mexico showed that in many communities—ranging from plants in abandoned agricultural fields to arthropods on carcasses—species do indeed turn over most rapidly early in succession, when many new species arrive to take advantage of available resources.

However, she also found that certain adverse conditions—such as isolation of the new community or an unfavorable climate—may hinder the arrival of new species, thereby slowing the rate at which the community fills with species and sometimes causing peak rates of change to occur later in succession.

Anderson's study provides a framework to understand why communities mature at different rates. According to the author, "Understanding how quickly new ecological communities develop is fundamental to numerous ecological questions ranging from, 'How often should fires or clear cuts be allowed on landscapes?' to 'What determines how many species are found on an island?' yet we were unable to make many generalizations about succession rate. That is what motivated this study."

In her study, Anderson first developed a method for quantifying rates of community change and how these vary as the community ages. She then collected data on over 60 different communities—a novel approach in succession research—and documented the changes in species composition throughout succession. Using these results, she was able to relate temporal patterns in rates of community change to processes that limit colonization and persistence of species: competition, harsh environmental conditions, and difficulty getting to the site.

The author states, "We still have many unanswered questions regarding rates of succession. My hope is that this study will inspire and inform future research on succession rate."

Source: University of Chicago

Explore further: Researchers discover new mechanism of DNA repair

Related Stories

Why haven't Madagascar's famed lemurs been saved yet?

Jun 30, 2015

Lemurs are cute – there is no denying it. Their big eyes and fluffy faces mean they really are the poster animals of Madagascar, an island known internationally for its unique flora and fauna. But the plight ...

Stink bugs have strong taste for ripe fruit

Jun 29, 2015

The brown marmorated stink bug has a bad reputation. And for good reason: every summer, this pest attacks crops and invades homes, causing both sizable economic losses and a messy, smelly nuisance—especially ...

Recommended for you

Researchers discover new mechanism of DNA repair

Jul 03, 2015

The DNA molecule is chemically unstable giving rise to DNA lesions of different nature. That is why DNA damage detection, signaling and repair, collectively known as the DNA damage response, are needed.

The math of shark skin

Jul 03, 2015

"Sharks are almost perfectly evolved animals. We can learn a lot from studying them," says Emory mathematician Alessandro Veneziani.

Cuban, US scientists bond over big sharks

Jul 03, 2015

Somewhere in the North Atlantic right now, a longfin mako shark—a cousin of the storied great white—is cruising around, oblivious to the yellow satellite tag on its dorsal fin.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.