K-State attosecond research could aid Homeland Security

May 21, 2007

Building a new laser-like X-ray source powerful and quick enough to capture fast motion in the atomic world is a big job. But Zenghu Chang, Kansas State University professor of physics, and his team of physicists and engineers think their efforts will be worth it.

Possible applications of this attosecond laser technology include identifying elements. This means a laser pulse could be beamed into a suspicious package, for example, to quickly determine if it in fact did contain dangerous chemicals.

Chang is the principal investigator on a grant from the Department of Defense for research to improve attosecond sources and exploit the technology breakthrough for applications. The award is $1.25 million per year for three years with a possible two-year extension. Other team member institutions are Texas A&M University and the University of Ottawa.

Attosecond pulses are a special kind of X-ray; they can identify what molecules are in something.

"Just like each person has his or her unique fingerprints, molecules can be identified by their unique features too," Chang said. "As an example, different molecules absorb light differently. That is why we see things with different colors. We can tell which one is made of gold and which one is made of silver just by looking at their colors."

Attosecond pulses are extremely fast flashes of light, which Chang likens to a camera flash.

"This is very similar to taking pictures of a moving body with a camera," he said. "One has to reduce the exposure time using the shutter of the camera for a fast-moving object otherwise the image is blurred."

For their research on attoseconds, Chang and colleagues need a short-pulse, high-power laser. They are developing the technique to control the phase of a laser pulse and then amplify it.

Other possible uses for this short-pulse, high-power technology include machining. Most of the time when cutting with a high-power laser, more than what is necessary is cut, due to its extra heat. But with short pulses, the laser is much more precise.

"The technology is very new and we're still looking at possible applications," Chang said.

Source: Kansas State University

Explore further: 'Plasmonic' material could bring ultrafast all-optical communications

Related Stories

Dense star clusters shown to be binary black hole factories

July 29, 2015

The coalescence of two black holes—a very violent and exotic event—is one of the most sought-after observations of modern astronomy. But, as these mergers emit no light of any kind, finding such elusive events has been ...

Recommended for you

Magnetism at nanoscale

August 3, 2015

As the demand grows for ever smaller, smarter electronics, so does the demand for understanding materials' behavior at ever smaller scales. Physicists at the U.S. Department of Energy's Ames Laboratory are building a unique ...

Study calculates the speed of ice formation

August 3, 2015

Researchers at Princeton University have for the first time directly calculated the rate at which water crystallizes into ice in a realistic computer model of water molecules. The simulations, which were carried out on supercomputers, ...

Small tilt in magnets makes them viable memory chips

August 3, 2015

University of California, Berkeley, researchers have discovered a new way to switch the polarization of nanomagnets, paving the way for high-density storage to move from hard disks onto integrated circuits.

Scientists bring order, and color, to microparticles

August 3, 2015

A team of New York University scientists has developed a technique that prompts microparticles to form ordered structures in a variety of materials. The advance, which appears in the Journal of the American Chemical Society ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.