New Evidence for the 'Solar Oxygen Crisis'

May 2, 2007 By Laura Mgrdichian feature
The Sun

Scientists have published new evidence supporting the recent discovery that the Sun contains about half as much oxygen as previously thought, an issue some scientists have dubbed the solar oxygen crisis. This is a potentially huge scientific problem because scientists have used the particular prior measurement as a platform for understanding the inner workings of other stars.

Oxygen is the third most abundant atom in the universe and the element most frequently produced in the “nuclear furnaces” of stars. In many astrophysical situations, oxygen is linked to the abundances carbon, nitrogen, and neon. If the oxygen abundance in the Sun is half as much as scientists thought, these other elemental abundances may also be off by a factor of two.

“The abundance of solar oxygen serves as a key reference for the chemical composition of other stars,” lead scientist Hector Socas-Navarro, of the National Center for Atmospheric Research, explained to PhysOrg.com. “We thought we had very solid measurements of this abundance since the 1980s, but recent evidence indicates that we've been overestimating it by almost a factor of two. The implications of this are incredibly important.”

In the April 19, 2007, online edition of The Astrophysical Journal, Socas-Navarro and colleague Aimee Norton, a solar physicist at the National Solar Observatory, discuss how they obtained new evidence for the solar oxygen crisis by using a type of light-analysis device to take measurements of infrared and visible light radiating from a patch of the Sun.

The device, known as the Spectro-Polarimeter for Infrared and Optical Regions (SPINOR), attaches to a telescope; in this case, the Richard Dunn Solar Telescope located in Sunspot, New Mexico. The telescope collects the light and sends it to SPINOR, which analyzes its properties. Because atoms in the Sun emit light at very specific wavelengths, the researchers can calculate the abundances of various elements by measuring the wavelengths of light rays coming in.

Analysis of the SPINOR data produced a value of the oxygen abundance that agrees with calculations by other research groups studying the solar oxygen crisis. The measurement contained larger-than-expected uncertainty.

“This measurement is more uncertain than we thought it would be, which is one of the interesting conclusions of our particular work,” said Socas-Navarro.

He added that there is another major downside of a lower oxygen abundance. Models of the solar interior once predicted that sound waves in the Sun traveled at certain speed, a value that agreed well with the measured speed. Because the speed depends on composition, this is another way that scientists learn about the processes that take place in the Sun, what elements it is made of, and in what quantities. Now, with the Sun having half as much oxygen, carbon, nitrogen, and neon, the sound speed derived from the models doesn't match the measured speed well.

“Exactly what this means is not very clear, but it casts doubt on the correctness or at least the accuracy of models of stellar interiors, which are a cornerstone of modern astrophysics,” he said.

Citation: H. Socas-Navarro and A.A. Norton, “The solar oxygen crisis: Probably not the last word” The Astrophysical Journal, 660:L153-L156, 2007 May 10

Copyright 2007 PhysOrg.com.
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of PhysOrg.com.

Explore further: Sunny, with a chance of nuclear bullets

Related Stories

Sunny, with a chance of nuclear bullets

July 23, 2015

In space, far above Earth's turbulent atmosphere, you might think the one thing you don't have to worry about is weather. But you would be wrong. Just ask the people charged with the safety of the Cloud-Aerosol Lidar and ...

Where is solar power headed?

July 22, 2015

Most experts agree that to have a shot at curbing the worst impacts of climate change, we need to extricate our society from fossil fuels and ramp up our use of renewable energy.

Solar battery receives 20% of its energy from the sun

July 14, 2015

(Phys.org)—Last October, researchers at Ohio State demonstrated the world's first solar battery—a solar cell and a lithium-oxygen (Li-O2) battery combined into a single device. The main attraction of the solar battery ...

Bricks to build an Earth found in every planetary system

July 9, 2015

Earth-like planets orbiting other stars in the Milky Way are three times more likely to have the same type of minerals as Earth than astronomers had previously thought. In fact, conditions for making the building blocks of ...

Recommended for you

Rogue wave theory to save ships

July 29, 2015

Physicists have found an explanation for rogue waves in the ocean and hope their theory will lead to devices to warn ships and save lives.

Researchers build bacteria's photosynthetic engine

July 29, 2015

Nearly all life on Earth depends on photosynthesis, the conversion of light energy into chemical energy. Oxygen-producing plants and cyanobacteria perfected this process 2.7 billion years ago. But the first photosynthetic ...

Innovations from the wild world of optics and photonics

August 2, 2015

Traditional computers manipulate electrons to turn our keystrokes and Google searches into meaningful actions. But as components of the computer processor shrink to only a few atoms across, those same electrons become unpredictable ...

Quantum matter stuck in unrest

July 31, 2015

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.