Single circadian clock regulates flies' response to light and temperature

May 08, 2007

Animals have biological clocks with a cycle of about 24 hours — these circadian rhythms allow them to align their physiology and behavior to the earth’s rotation. Now new research from Rockefeller University shows that the same molecular clock responsible for helping flies sync themselves with patterns of light and dark might be what helps them sync to patterns of temperature, too.

Researchers in the lab of Michael Young, the Richard and Jeanne Fisher Professor and head of the Laboratory of Genetics, took adult Drosophila and placed them in a dark environment where the only variable was temperature, which alternated between warm and cool in 12-hour intervals. After a few days of temperature variability, the scientists then held the temperature steady in the warm phase, at about 77 degrees Fahrenheit, to see whether their molecular clocks continued to cycle in the absence of temperature fluctuations.

When they looked at gene activity in the flies’ heads, where their light-sensing capabilities are located, the researchers found a great deal of overlap between those genes that oscillate in response to cycles of light and dark, and those that oscillate according to cycles of temperature. Upon closer examination, they saw that although temperature-regulated genes also appear to be activated by light, as indicated by measurements of the transcripts the genes produce, the opposite was not true: Not all light-regulated genes fluctuate with temperature. “So, it seems that the temperature transcripts are a subset of the light transcripts,” says Catharine Boothroyd, a postdoc in the lab and the paper's first author. This, she says, means that the temperature-responsive genes are not controlled by a separate circadian clock.

Even more interesting, the researchers found that the transcriptional patterns of light and temperature genes are offset by about six hours, with light peaking earlier than temperature — a pattern that mirrors the ups and downs of the natural environment, in which temperature is lowest around dawn and highest near sunset.

And what happens if the single clock gets conflicting light and temperature signals? Over the ranges that Boothroyd and Young tested, temperature turned out to be the weaker of the two stimuli. “If you give the fly appropriate phases of light and temperature, it maintains its activity as it would in light alone,” Boothroyd says. “But if you give it light and temperature in the opposite phases — light during cooler temperatures and darkness during warmer ones — the fly somehow has to choose which one to follow, and it chooses light.”

“The big message,” she says, “is that there is one molecular clock, which integrates information from both light and temperature. And it presumably relays that information to the rest of the organism.”

Citation: PLoS Genetics 3(4): e54 (April 6, 2007)

Source: Rockefeller University

Explore further: Researchers discover new mechanism of DNA repair

Related Stories

New evidence emerges on the origins of life

Jun 01, 2015

In the beginning, there were simple chemicals. And they produced amino acids that eventually became the proteins necessary to create single cells. And the single cells became plants and animals. Recent research ...

Protein scaffold

May 27, 2015

Right before a cell starts to divide to give birth to a daughter cell, its biochemical machinery unwinds the chromosomes and copies the millions of protein sequences comprising the cell's DNA, which is packaged ...

Recommended for you

Researchers discover new mechanism of DNA repair

11 hours ago

The DNA molecule is chemically unstable giving rise to DNA lesions of different nature. That is why DNA damage detection, signaling and repair, collectively known as the DNA damage response, are needed.

The math of shark skin

19 hours ago

"Sharks are almost perfectly evolved animals. We can learn a lot from studying them," says Emory mathematician Alessandro Veneziani.

Cuban, US scientists bond over big sharks

23 hours ago

Somewhere in the North Atlantic right now, a longfin mako shark—a cousin of the storied great white—is cruising around, oblivious to the yellow satellite tag on its dorsal fin.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.