Cheap source of energy: Cell splits water via sunlight to produce hydrogen

May 1, 2007 By Tony Fitzpatrick
Cell splits water via sunlight to produce hydrogen
Pratim Biswas and his group have developed a method to make a variety of oxide semiconductors that, when put into water promote chemical reactions that split water into hydrogen and oxygen. The method provides a new low cost and efficient option for hydrogen production. Credit: David Kilper/WUSTL Photo

Engineers at Washington University in St. Louis have developed a unique photocatalytic cell that splits water to produce hydrogen and oxygen in water using sunlight and the power of a nanostructured catalyst.

The group is developing novel methodologies for synthesis of nanostructured films with superior opto-electronic properties. One of the methods, which sandwiches three semiconductor films into a compact structure on the nanoscale range, is smaller, more efficient and more stable than present photocatalytic methods, which require multiple steps and can take from several hours to a day to complete.

The discovery provides a new, low-cost and efficient option for hydrogen production and can be used for a variety of distributed energy applications.

Pratim Biswas, Ph.D., the Stifel and Quinette Jens Professor and Chair of the Department of Energy, Environmental and Chemical Engineering, and his graduate student Elijah Thimsen, recently have developed the well-controlled, gas phase process, and have demonstrated it for synthesizing a variety of oxide semiconductors such as iron and titanium dioxide films in a single step process. It is based on a simple, inexpensive flame aerosol reactor (FLAR) and consists of four mass flow controllers to regulate process gases, a standard bubbler to deliver a precursor, a metal tube that acts as a burner and a water-cooled substrate holder.

"We put these films in water and they promote some reactions that split water into hydrogen and oxygen," said Biswas. "We can use any oxide materials such as titanium dioxide, tungsten oxide and iron oxide in nanostructures sandwiched together that make very compact structures. The process is direct and takes only a few minutes to fabricate. More important, these processes can be scaled up to produce larger structures in a very cost effective manner in atmospheric pressure processes."

Collaborations have now been established with Dewey Holten, Ph.D., Washington University professor of chemistry in Arts & Sciences, to better understand the electron-hole pair kinetics, information that can then be used to tune the synthesis process. Other collaborations with Robert Blankenship, Ph.D., Washington University professor of biology and chemistry in Arts & Sciences, are being explored to create hybrid bio-nanostructures that will improve the light absorption efficiencies over a broader range of wavelengths. Electrospray and other aerosol techniques are being used to create these hybrid films.

The method was described in a recent issue of SPIE, a publication of the International Society for Optical Engineering.

The research is among the first wave of news out of the new Washington University Department of Energy, Environmental and Chemical Engineering, which performs research on energy and environment, including alternative fuels and energy sources, air quality research, nanoparticle technology and particle emission control, among other topics.

Some of the department faculty — 14 members now, expected to double in five to ten years — are active in the University's ambitious BioEnergy Initiative, which is focused on the development of technologies for the production of next generation biofuels. The adoption of a systems approach will not only enable development processes for large volume production of liquid fuels from plant-based sources, but also at a low cost, and most importantly, in an environmentally benign manner — not only during the production, but also during the actual usage.

Source: Washington University in St. Louis

Explore further: A different type of 2-D semiconductor

Related Stories

A different type of 2-D semiconductor

September 25, 2015

To the growing list of two-dimensional semiconductors, such as graphene, boron nitride, and molybdenum disulfide, whose unique electronic properties make them potential successors to silicon in future devices, you can now ...

ORNL demonstrates road to supercapacitors for scrap tires

September 25, 2015

Some of the 300 million tires discarded each year in the United States alone could be used in supercapacitors for vehicles and the electric grid using a technology developed at the Department of Energy's Oak Ridge National ...

Laser ablation boosts terahertz emission

September 17, 2015

From almost instantaneous wireless transfer of huge amounts of data and easy detection of explosives, weapons, or harmful gases, to safe 3-D medical imaging and new advances in spectroscopy —technologies based on terahertz ...

How orange peel could replace crude oil in plastics

September 16, 2015

Orange juice, both delicious and nutritious, is enjoyed by millions of people across the world every day. However, new research indicates that it could have potential far beyond the breakfast table. The chemicals in orange ...

Recommended for you

Most EU nations seek to bar GM crops

October 4, 2015

Nineteen of the 28 EU member states have applied to keep genetically modified crops out of all or part of their territory, the bloc's executive arm said Sunday, the deadline for opting out of new European legislation on GM ...

The dark side of Nobel prizewinning research

October 4, 2015

Think of the Nobel prizes and you think of groundbreaking research bettering mankind, but the awards have also honoured some quite unhumanitarian inventions such as chemical weapons, DDT and lobotomies.

Internet giants race to faster mobile news apps

October 4, 2015

US tech giants are turning to the news in their competition for mobile users, developing new, faster ways to deliver content, but the benefits for struggling media outlets remain unclear.

Trade in invasive plants is blossoming

October 3, 2015

Every day, hundreds of different plant species—many of them listed as invasive—are traded online worldwide on auction platforms. This exacerbates the problem of uncontrollable biological invasions.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.