Cannibalism of the young allows individual fish to specialize

May 23, 2007

Whitefish, Arctic char, threespine stickleback and some sunfishes display quite discrete groups living in the same lakes but utilizing different food resources in order to survive. The phenomenon is called "resource polymorphism." Why don't all species show this pattern? Early cannibalism is found in all species displaying resource polymorphism.

If you go fishing for Arctic char you may end up catching distinctly different-looking individuals although they were all caught in the same lake. Similarly, whitefish, threespine stickleback, and some sunfishes also display quite discrete groups living in the same lakes but utilizing different food resources in order to survive.

The phenomenon is called resource polymorphism and has been observed and documented as early as in the 18th century, but has continued to receive a lot of scientific interest since it gives us a chance to study ongoing evolution. However, not all species display resource polymorphism, and naturally, in order to gain deeper understanding of evolutionary facilitators, the question arises: Why do some species display resource polymorphism, whereas other don't?

In this study, a team of European researchers combines literature data and advanced ecological theory in order to look for species-specific life history patterns explaining the presence/absence of resource polymorphism in fish. Interestingly and not at all obvious, the study suggests that early cannibalism, which is found in all species displaying resource polymorphism, is a promoting factor. However, incorporating recently explored and presented population dynamic theory, based upon the population's size distribution and the effect of the individual's size on its relative competitiveness, a logic explanation is given.

The effect of early cannibalism is twofold. First, it stabilizes the variation in the number of individuals over time, which in turn increases the benefit of specializing on any resource since the risk of being dependent on a vanishing resource decreases. Second, an early disappearance of small newborn individuals increases the abundance of their prey due to decreased consumption from the small ones, hence increasing the benefit for larger individuals to specialize on this specific prey (typically zooplankton). The team now plans to do new modeling exercises and practical experiments in order to further explore the suggested hypothesis.

Source: University of Chicago

Explore further: Researchers discover new mechanism of DNA repair

Related Stories

Simplifying SNP discovery in the cotton genome

Apr 01, 2015

The term "single-nucleotide polymorphism" (SNP) refers to a single base change in DNA sequence between two individuals. SNPs are the most common type of genetic variation in plant and animal genomes and are, thus, an important ...

How repeatable is evolutionary history?

Jun 23, 2014

Writing about the weird soft-bodied fossils found in the Burgess Shale in the Canadian Rockies, paleontologist Stephen Jay Gould noted that of 25 initial body plans exhibited by the fossils, all but four ...

Cotton breeding researchers take giant leap

Dec 02, 2013

Narrow germplasm base and limited technology have made it difficult for cotton researchers to identify specific DNA markers needed to locate genes that confer desirable traits. But that's no longer the case.

Recommended for you

Researchers discover new mechanism of DNA repair

19 hours ago

The DNA molecule is chemically unstable giving rise to DNA lesions of different nature. That is why DNA damage detection, signaling and repair, collectively known as the DNA damage response, are needed.

The math of shark skin

Jul 03, 2015

"Sharks are almost perfectly evolved animals. We can learn a lot from studying them," says Emory mathematician Alessandro Veneziani.

Cuban, US scientists bond over big sharks

Jul 03, 2015

Somewhere in the North Atlantic right now, a longfin mako shark—a cousin of the storied great white—is cruising around, oblivious to the yellow satellite tag on its dorsal fin.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.