The brain can rapidly reorganise to recover from damage

May 04, 2007
The brain can rapidly reorganise to recover from damage
The brain reorganises itself after parts of it become damaged. Credit: iStockphoto

The brain can transfer specific functions to new areas when part of it is damaged, according to Oxford research.

The findings, published in Neuron, are relevant to understanding processes of recovery after stroke.

When brain damage occurs in stroke patients, activity in undamaged parts of the brain often increases. This is particularly prominent in patients with poor recovery.

However, it was not clear whether this was a cause of slow recovery, with activity in the brain becoming chaotic, or part of an adaptive process that helps recovery – the brain trying hard to transfer function over to the healthy hemisphere.

To find out, Dr Jacinta O’Shea and colleagues in the Department of Experimental Psychology and the Centre for Functional MRI of the Brain simulated brain damage in healthy volunteers by using transcranial magnetic stimulation (TMS), temporarily disrupting normal activity in the premotor cortex (a part of the brain that enables people to select which movement to make).

Participants were then asked to perform a task whose success depended on normal levels of activity in the premotor cortex: they had to make one of two finger movements depending on which of several shapes was presented on a computer screen.

As would be expected, after the simulated brain damage participants were initially slower at selecting the correct response. However, after four minutes, performance was back to normal. ‘This suggested to us that the brain might have reorganised itself to compensate for the interference’, says Dr O’Shea.

By imaging participants’ brains, the researchers confirmed that during recovered performance there was increased activity in undisrupted parts of the brain. As final confirmation, they tried disrupting one of the newly active brain areas – and, as predicted, performance on the task was once again impaired. The function of the ‘damaged’ brain area had been moved to the ‘healthy’ half of the brain.

The transfer was specific to the function of the premotor cortex, and it happened only when it was needed for the job,’ said Dr O’Shea. ‘The speed of the reorganisation was also impressive: the brain temporarily reconfigured itself in a matter of minutes.

‘Our findings show just how flexible the brain is.’

Source: University of Oxford

Explore further: Prion trials and tribulations: Finding the right tools and experimental models

Related Stories

Me and my world: The human factor in space

8 hours ago

The world around us is defined by how we interact with it. But what if our world was out of this world? As part of NASA's One-Year Mission, researchers are studying how astronauts interact with the "world" ...

Functioning brain follows famous sand pile model

Jun 22, 2015

One of the deep problems in understanding the brain is to understand how relatively simple computing units (the neurons), collectively perform extremely complex operations (thinking).

Recommended for you

Researchers reveal a genetic blueprint for cartilage

Jul 02, 2015

Cartilage does a lot more than determine the shapes of people's ears and noses. It also enables people to breathe and to form healthy bones—two processes essential to life. In a study published in Cell Re ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.