Animal study identifies promising new target for brain tumor therapy

May 8, 2007

A drug that targets the body’s immune cells may be effective in treating malignant brain tumors, according to a new study led by researchers from Duke’s Preston Robert Tisch Brain Tumor Center. In animal models, the drug re-engaged the body’s cancer-damaged immune system.

"We were effectively targeting ‘bad’ T cells that can damage the immune system if their numbers are too high, and ‘good’ T cells that help create an immune response to things like infections and tumors," said John Sampson, M.D., Ph.D., a neurosurgeon at Duke and senior investigator on the study. "We found that this drug was able to stop the bad cells in their tracks by giving the good ones a type of bulletproof jacket."

The researchers speculate that patients with a restored immune system will be better equipped to fight off brain tumors. They hope to start a clinical trial soon.

The results of this study hold promise for the development of vaccines that can work against tumors by eliciting the help of the body’s immune system, Sampson said. The researchers published their findings in the April 1, 2007 issue of the journal Clinical Cancer Research. The study was funded by the National Institutes of Health, the Brain Tumor Society and Accelerate Brain Cancer Cure.

T cells are white blood cells that play an important role in the body’s immune system. Regulatory T cells help maintain immune balance, so they are responsible for toning down an immune response after the body has fought off a foreign invader, such as an infection, Sampson said. But patients with brain tumors often have too many regulatory T cells, rendering their immune systems ineffective in fighting off tumors.

In contrast, cytotoxic T cells, which act to destroy infection and tumor cells, are often depleted in people with brain tumors, enabling the tumor cells to grow and spread unchecked. Those cytoxic T cells that remain can be insufficient because of the increased number of regulatory T cells, Sampson said.

"We speculated that this drug, which has been used successfully to treat other types of cancer such as melanoma and prostate cancer, might be effective in treating tumors that originate in the brain as well," said Peter Fecci, Ph.D., a medical student at Duke and lead investigator on the study.

The identification of T cells as targets for this drug was first made by study co-author James Allison, Ph.D., of Memorial Sloan-Kettering Cancer Center, who then went on to demonstrate the effectiveness of the drug in pre-clinical models of other types of cancer.

For this study, the researchers found that the drug, which targets a molecule called CTLA-4 that is found on both types of T cells, could halt the effects of the bad T cells, which stunt immune response, by making the good T cells more resistant to them, thereby helping the immune system combat the brain tumor, Fecci said.

"Brain tumors can be especially challenging because these patients have such high levels of regulatory T calls and also because many drugs are not able to permeate the blood-brain barrier," Fecci said. "We are encouraged by these results because this drug has a restorative effect on the immune system and doesn’t need to get into the brain to be effective." Animal subjects also did not demonstrate symptoms of autoimmunity, a condition in which the immune system attacks the body, which can be a side effect of drugs that target immune cells, Fecci said.

Duke researchers are in the process of launching a clinical trial to test the effectiveness of the drug in humans.

"This dual-pronged approach that targets both types of cells holds great promise," Sampson said. "We hope that it will soon lead to more effective treatments for people diagnosed with these deadly brain tumors."

Source: Duke University Medical Center

Explore further: Breakthrough in understanding of brain development: Immune cell involvement revealed

Related Stories

How a nasty, brain-eating parasite could help us fight cancer

August 26, 2016

We've known since the turn of the 20th century that some infectious diseases are a major risk for developing specific cancers. More worryingly, about one-sixth of cancers worldwide are attributable to infectious agents. Globally, ...

Team discovers how Zika virus causes fetal brain damage

August 24, 2016

Infection by the Zika virus diverts a key protein necessary for neural cell division in the developing human fetus, thereby causing the birth defect microcephaly, a team of Yale scientists reported Aug. 24 in the journal ...

Basic research fuels advanced discovery

August 26, 2016

Clinical trials and translational medicine have certainly given people hope and rapid pathways to cures for some of mankind's most troublesome diseases, but now is not the time to overlook the power of basic research, says ...

A clear view of the nervous system

August 22, 2016

A new and versatile imaging technique enables researchers to trace the trajectories of whole nerve cells and provides extensive insights into the structure of neuronal networks.

Zika virus may persist in the vagina days after infection

August 25, 2016

The Zika virus reproduces in the vaginal tissue of pregnant mice several days after infection, according to a study by Yale researchers. From the genitals, the virus spreads and infects the fetal brain, impairing fetal development. ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Cow embryos reveal new type of chromosome chimera

May 27, 2016

I've often wondered what happens between the time an egg is fertilized and the time the ball of cells that it becomes nestles into the uterine lining. It's a period that we know very little about, a black box of developmental ...

Shaving time to test antidotes for nerve agents

February 29, 2016

Imagine you wanted to know how much energy it took to bike up a mountain, but couldn't finish the ride to the peak yourself. So, to get the total energy required, you and a team of friends strap energy meters to your bikes ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.