Terahertz imaging goes the distance

April 26, 2007

Terahertz (THz) radiation, or far-infrared light, is potentially very useful for security applications, as it can penetrate clothing and other materials to provide images of concealed weapons, drugs, or other objects. However, THz scanners must usually be very close to the objects they are imaging. Doubts have lingered over whether it is possible to use THz waves to image objects that are far away, because water vapor in air absorbs THz radiation so strongly that most of it never reaches the object to be imaged.

At the upcoming CLEO/QELS meeting in Baltimore, an MIT-Sandia team will demonstrate the first real-time THz imaging system that obtains images from 25 meters away. The technique takes advantage of the fact that there are a few "windows," or frequency ranges, of the terahertz spectrum that do not absorb water very strongly.

The MIT-Sandia group designed a special, semiconductor-based device known as a "quantum cascade laser" that delivers light in one of these windows (specifically, around 4.9 THz). They shine this light through a thin target with low water content (for example, a dried seed pod), and a detector on the other side of the sample records an image.

A cryorefrigerator maintains the laser at a temperature of 30 Kelvin, where it produces 17 milliwatts of power (as opposed to the microwatts of power typical of pulsed terahertz sources) in order to provide enough terahertz radiation to obtain a decent image. Increasing the power of the lasers and sensitivity of the detectors can potentially enable imaging of thicker objects or imaging of the reflected light, which would be more practical for security applications. In addition, the development of high-operating-temperature quantum cascade lasers, which operate without the use of cryogenic materials, may also increase the availability of this approach. In the closer term, however, this approach may enable sensing of chemical residues or contaminants in the air.

Source: Optical Society of America

Explore further: Faster detection of hidden objects by new terahertz sensor

Related Stories

Recommended for you

Innovations from the wild world of optics and photonics

August 2, 2015

Traditional computers manipulate electrons to turn our keystrokes and Google searches into meaningful actions. But as components of the computer processor shrink to only a few atoms across, those same electrons become unpredictable ...

New blow for 'supersymmetry' physics theory

July 27, 2015

In a new blow for the futuristic "supersymmetry" theory of the universe's basic anatomy, experts reported fresh evidence Monday of subatomic activity consistent with the mainstream Standard Model of particle physics.

Rogue wave theory to save ships

July 29, 2015

Physicists have found an explanation for rogue waves in the ocean and hope their theory will lead to devices to warn ships and save lives.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.