Sponging up the evolutionary past

April 27, 2007
Sponging up the evolutionary past
The larvae of the sponge Amphimedon queenslandica expresses similar developmental genes to those in humans.

University of Queensland researchers are exploring the evolution of what has been termed the “Rosetta Stone” of the gene world, by tracing the development of the humble sea sponge.

A team led by Professor Bernie Degnan, from UQ's School of Integrative Biology, has found sea sponges don't have Hox genes – the genes responsible in flies, animals, and even humans, for where the head and bottom should go.

“Sea sponges are basically living fossils and haven't changed since before the Cambrian explosion – the time when most of the major groups of animals first appear,” Professor Degnan said.

“They are one of the simplest animals and yet their genome (their genetic information) is remarkably similar to our own.

“What we have found is as sponges don't have this gene, it must have evolved after sponges split from our evolutionary path, and it corresponds with a big jump in the rise of complex organisms.”

Professor Degnan said the research, published recently in the scientific journal Current Biology, adds another piece of the evolutionary puzzle to how life evolved on Earth.

“Sea sponges are fascinating animals and offer us a window into the past,” he said.

“But they are also showing us a window into the future as they are an immense source of bio-active compounds that could have pharmaceutical and industrial benefits.”

He said one example of potential benefit is being explored by looking at the way sponges develop a glass skeleton.

“They grow this ornate and intricate skeleton which is made out of glass,” he said.

“Their genome encodes the amazing ability to take silica out of sea water and turn it into glass, so we are looking at that for the future environmentally-benign bio-fabrication of glass.

“And other researchers are looking at the sponge for novel drug development.”

He said his team was continuing its research into sponges to further unlock the potential of such a simple yet amazing creature.

Source: University of Queensland

Explore further: Tiny sponge fossil upsets evolutionary model

Related Stories

DNA barcoding discloses Antarctic sponge diversity

June 25, 2015

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have used DNA barcoding to elucidate the diversity of the sponge fauna found in Antarctic waters. The data provide new insights into the evolution of this poorly ...

Compiling a 'dentist's handbook' for penis worms

May 6, 2015

A new study of teeth belonging to a particularly phallic-looking creature has led to the compilation of a prehistoric 'dentist's handbook' which may aid in the identification of previously unrecognized specimens from the ...

Largest study of sponges sheds new light on animal evolution

February 4, 2014

Sponges are an important animal for marine and freshwater ecology and represent a rich animal diversity found throughout the world, from tropical climates to the arctic poles. For evolutionary biologists, they also present ...

Recommended for you

Researchers design first artificial ribosome

July 29, 2015

Researchers at the University of Illinois at Chicago and Northwestern University have engineered a tethered ribosome that works nearly as well as the authentic cellular component, or organelle, that produces all the proteins ...

Meet the high-performance single-molecule diode

July 29, 2015

A team of researchers from Berkeley Lab and Columbia University has passed a major milestone in molecular electronics with the creation of the world's highest-performance single-molecule diode. Working at Berkeley Lab's Molecular ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.