Why are there so many more species of insects? Because insects have been here longer

Apr 03, 2007

J. B. S. Haldane once famously quipped that "God is inordinately fond of beetles." Results of a study by Mark A. McPeek of Dartmouth College and Jonathan M. Brown of Grinnell College suggest that this fondness was expressed not by making so many, but rather by allowing them to persist for so long.

In a study appearing in the April issue of the American Naturalist, McPeek and Brown show that many insect groups like beetles and butterflies have fantastic numbers of species because these groups are so old. In contrast, less diverse groups, like mammals and birds, are evolutionarily younger.

This is a surprisingly simple answer to a fundamental biological puzzle. They accumulated data from molecular phylogenies (which date the evolutionary relationships among species using genetic information) and from the fossil record to ask whether groups with more species today had accumulated species at faster rates. Animals as diverse as mollusks, insects, spiders, fish, amphibians, reptiles, birds, and mammals appear to have accumulated new species at surprisingly similar rates over evolutionary time.

Groups with more species were simply those that had survived longer. Their analyses thus identify time as a primary determinant of species diversity patterns across animals. Given the unprecedented extinction rates that the Earth's biota are currently experiencing, these findings are also quite sobering. We are rapidly losing what it has taken nature hundreds of millions of years to construct, and only time can repair it.

Citation: Mark A. McPeek and Jonathan M. Brown, "Clade Age and Not Diversification Rate Explains Species Richness among Animal Taxa" The American Naturalist, volume 169 (2007), pages E97–E106 DOI: 10.1086/512135

Source: University of Chicago

Explore further: Researchers discover new mechanism of DNA repair

Related Stories

Capturing beautiful millipedes in Ohio

Aug 05, 2014

I stumbled through the forest, attempting to find a path I knew was there. It didn't take that long to find the decaying bridge, now being overtaken by blackberry and multiflora rose. That is where I had ...

Lack of diversity a weak link for dolphins

Jul 04, 2014

Limited gene flow between groups of Australian snubfin and Indo-Pacific humpback dolphins in WA's north may make them more vulnerable to the environmental impacts of coastal industrial developments.

Impact glass stores biodata for millions of years

Apr 18, 2014

(Phys.org) —Bits of plant life encapsulated in molten glass by asteroid and comet impacts millions of years ago give geologists information about climate and life forms on the ancient Earth. Scientists ...

Mercury contamination threatens Antarctic birds

Apr 11, 2014

Mercury contamination in the Antarctic and Subantarctic affects bird populations, reveal researchers from the Centre d'Etudes Biologiques de Chizé and from the 'Littoral, Environnement et Sociétés' Laboratory ...

Recommended for you

Researchers discover new mechanism of DNA repair

Jul 03, 2015

The DNA molecule is chemically unstable giving rise to DNA lesions of different nature. That is why DNA damage detection, signaling and repair, collectively known as the DNA damage response, are needed.

The math of shark skin

Jul 03, 2015

"Sharks are almost perfectly evolved animals. We can learn a lot from studying them," says Emory mathematician Alessandro Veneziani.

Cuban, US scientists bond over big sharks

Jul 03, 2015

Somewhere in the North Atlantic right now, a longfin mako shark—a cousin of the storied great white—is cruising around, oblivious to the yellow satellite tag on its dorsal fin.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.