Robust time estimation reconciles views of the antiquity of placental mammals

April 18, 2007

Despite great progress over the past decade, the evolutionary history of placental mammals remains controversial. While a consensus is emerging on the topology of the evolutionary tree, although with occasional disagreement, divergence times remain uncertain.

The age of earlier nodes and in particular the root, remain especially uncertain in the absence of definitive placental fossils deeper into the Cretaceous. Both paleontological and morphological studies suggest that the radiation of placental orders and super orders occurred close to the Cretaceous–Tertiary (K–T) boundary about 65 million years ago (mya). In contrast, molecular studies have suggested markedly older origins for many superordinal groups and that some extant orders diversified before the K–T boundary.

However, this discrepancy may not be real, but rather appear because of the violation of implicit assumptions in the estimation procedures, such as abrupt acceleration of evolutionary rate entangled with gradual variation and large-scale convergent evolution in molecular level.

By their new robust procedure, Dr. Kitazoe and his collaborators identified a strong and short-term acceleration of mitochondrial genome along the lineage leading to Laurasiatheria. The revised time at the root of placental mammals was much younger than the preceding reports, 84 million years ago instead of around 122 million years ago.

As a result, the estimated distribution of molecular divergence times is broadly consistent with quantitative analysis of the North American fossil record and traditional morphological views. They emphasize the necessity to scrutinize the implicit assumptions adopted by the models of molecular evolution and to develop procedures which rely little on those assumptions.

Citation: Kitazoe Y, Kishino H, Waddell PJ, Nakajima N, Okabayashi T, et al (2007) Robust Time Estimation Reconciles Views of the Antiquity of Placental Mammals. PLoS ONE 2(4): e384. doi:10.1371/journal.pone.0000384

Source: Public Library of Science

Explore further: Protein sequencing solves Darwinian mystery of 'strange' South American mammals

Related Stories

Koala study reveals clues about origins of the human genome

November 6, 2014

Eight percent of your genome derives from retroviruses that inserted themselves into human sex cells millions of years ago. Right now the koala retrovirus (KoRV) is invading koala genomes, a process that can help us understand ...

Placental mammal diversity exploded after age of dinosaurs

February 7, 2013

An international team of researchers has reconstructed the common ancestor of placental mammals—an extremely diverse group including animals ranging from rodents to whales to humans—using the world's largest dataset of ...

Recommended for you

X-rays reveal fossil secrets

September 3, 2015

A sophisticated imaging technique has allowed scientists to virtually peer inside a 10-million-year-old sea urchin, uncovering a treasure trove of hidden fossils.

Which insects are the best pollinators?

September 3, 2015

Bees top the charts for pollination success according to one of the first studies of insect functionality within pollination networks, published today by researchers at the University of Bristol and the University of St Andrews.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.