Plastic solar cell efficiency breaks record

Apr 19, 2007

The global search for a sustainable energy supply is making significant strides at Wake Forest University as researchers at the university’s Center for Nanotechnology and Molecular Materials have announced that they have pushed the efficiency of plastic solar cells to more than 6 percent.

In a paper to be published in an upcoming issue of the journal Applied Physics Letters, Wake Forest researchers describe how they have achieved record efficiency for organic or flexible, plastic solar cells by creating “nano-filaments” within light absorbing plastic, similar to the veins in tree leaves. This allows for the use of thicker absorbing layers in the devices, which capture more of the sun’s light.

Efficient plastic solar cells are extremely desirable because they are inexpensive and light weight, especially in comparison to traditional silicon solar panels. Traditional solar panels are heavy and bulky and convert about 12 percent of the light that hits them to useful electrical power. Researchers have worked for years to create flexible, or “conformal,” organic solar cells that can be wrapped around surfaces, rolled up or even painted onto structures.

Three percent was the highest efficiency ever achieved for plastic solar cells until 2005 when David Carroll, director of the Wake Forest nanotechnology center, and his research group announced they had come close to reaching 5 percent efficiency.

Now, a little more than a year later, Carroll said his group has surpassed the 6 percent mark.

"Within only two years we have more than doubled the 3 percent mark,” Carroll said. “I fully expect to see higher numbers within the next two years, which may make plastic devices the photovoltaic of choice.”

In order to be considered a viable technology for commercial use, solar cells must be able to convert about 8 percent of the energy in sunlight to electricity. Wake Forest researchers hope to reach 10 percent in the next year, said Carroll, who is also associate professor of physics at Wake Forest.

Because they are flexible and easy to work with, plastic solar cells could be used as a replacement for roof tiling or home siding products or incorporated into traditional building facades. These energy harvesting devices could also be placed on automobiles. Since plastic solar cells are much lighter than the silicon solar panels structures do not have to be reinforced to support additional weight.

Source: Wake Forest University

Explore further: 'Microcombing' creates stronger, more conductive carbon nanotube films

Related Stories

Bendable glass devices

Apr 27, 2015

A special class of glass materials known as chalcogenide glasses holds promise for speeding integration of photonic and electronic devices with functions as diverse as data transfer and chemical sensing. ...

Yet more opportunities for organic semiconductors

Mar 30, 2015

From 'Radio frequency identification' (RFID) tags to OLED displays and photovoltaic cells, organic semiconductors' high potential is widely recognised. A Marie Curie project has set out to bring potential innovation to the ...

Scanning Earth, saving lives

Mar 06, 2015

A high-speed camera for monitoring vegetation from space and combating famine in Africa is being adapted to spot changes in human skin cells, invisible to the naked eye, to help diagnose skin diseases like ...

Recommended for you

Researchers exploring spintronics in graphene

15 hours ago

Electronics is based on the manipulation of electrons and other charge carriers, but in addition to charge, electrons possess a property known as spin. When spin is manipulated with magnetic and electric ...

Defects in atomically thin semiconductor emit single photons

May 04, 2015

Researchers at the University of Rochester have shown that defects on an atomically thin semiconductor can produce light-emitting quantum dots. The quantum dots serve as a source of single photons and could be useful for ...

Many uses in researching quantum dots

May 04, 2015

It's easier to dissolve a sugar cube in a glass of water by crushing the cube first, because the numerous tiny particles cover more surface area in the water than the cube itself. In a way, the same principle applies to the ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.