Physicists Develop Force Law for Granular Impacts: Sand, Other Granular Matter's Behavior Is Better Defined

April 20, 2007

Sand. A single grain is tiny, but solid, and shares the physical properties of other solid matter. But pack or transport millions of grains together - as modern society does with coffee grounds, flour and industrial chemicals - and granular materials act differently, baffling engineers. They take the shape of their containers and flow freely, like liquids. In certain circumstances, they exert pressure like a gas. The basic lack of behavioral knowledge contributes to wasted resources and energy, as well as erosion and other natural phenomena.

Now, researchers at the University of Pennsylvania have devised, for the first time, a mathematical formula to measure the impact force of objects dropped into granular matter, clarifying its physical behavior not as solid-, liquid- or gas-like but with its own distinct and verifiable physical properties.

Penn researchers dropped a 1-inch-diameter steel sphere from a range of heights into non-cohesive glass beads. The study helped resolve a controversy among physics researchers who had proposed past force laws that often conflicted with one other. With more precise data, and a wider range of impact speeds, Penn physicists demonstrated that the interaction between the steel sphere and the granular medium can be explained by the sum of velocity-dependent inertial drag plus depth-dependent friction:

Total force = gravity + friction + inertial drag

Working with this formula, researchers are able to explain some interesting phenomena, such as why high force impacts (like a golf ball crashing into a sand trap) come to rest faster in granular matter than low-force impacts (a golf ball gently placed into sand). This behavior is not shared by solids or liquids.

"Experiments on the low-speed impact of solid objects into granular media have been used both to mimic geophysical events and to probe the unusual nature of the granular state of matter," said Douglas Durian, professor of physics and astronomy in Penn's School of Arts and Sciences. "Our understanding is important not just to industry but to other sciences where the very nature of matter is explored."

Granular material interests physicists who study the formation of cells. Geologists study tectonic plates, formed by granular matter. In nature, granular materials combine to form the planets and stars of the universe. On a smaller scale, they form the soil and sediment of the earth. A better understanding of their behavior may help populations affected by landslides and erosion.

The study was conducted by Durian, as well as Hiroaki Katsuragi, also of Penn's Department of Physics and Astronomy.

Source: University of Pennsylvania

Explore further: Neutron imaging instrument 'Dingo' helped reveal how granular material behaves under stress

Related Stories

Uncovering the real dirt on granular flow

December 3, 2008

(PhysOrg.com) -- A handful of sand contains countless grains, which interact with each other via friction and impact forces as they slip through your fingers. When a handful becomes a load in an excavator bucket, those interactions ...

Desert dwellers and 'bots reveal physics of movement

January 3, 2014

Physicist Daniel Goldman and his fellow researchers at the Georgia Institute of Technology shed light on a relatively unexplored subject—how organisms such as sea turtles and lizards move on (or within) sand.

Recommended for you

Creating antimatter via lasers?

September 27, 2016

Dramatic advances in laser technologies are enabling novel studies to explore laser-matter interactions at ultrahigh intensity. By focusing high-power laser pulses, electric fields (of orders of magnitude greater than found ...

Shape-programmable miniscule robots

September 27, 2016

One day, microrobots may be able to swim through the human body like sperm or paramecia to carry out medical functions in specific locations. Researchers from the Max Planck Institute for Intelligent Systems in Stuttgart ...

Cosmic dust demystified

September 27, 2016

The solar system is a dusty environment, with trillions of cosmic dust particles left behind by comets and asteroids that orbit the sun. All this dust forms a relatively dense cloud through which the Earth travels, sweeping ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.