Nanotube-Tipped Probe Developed at Drexel Considered Vital to Cell Treatment

Apr 06, 2007

Drexel University College of Engineering researchers have successfully developed carbon nanotube-tipped pipettes that could become key to cell biology in-situ DNA sequencing and organelle-targeted drug delivery.

According to the researchers, this development makes it possible to perform injections or probe the fluid, not just inside a cell, but in specific regions inside the cell, maybe even specific organelles. The probe has the possibility of transferring fluids through the carbon nanotube (CNT) into and out of the pipette, thereby bridging the gap between existing microscale technologies and nanoscale interactions.

The carbon nanotube-tipped probe was developed Drs. Adam Fontecchio and Gennady Friedman, both of Drexel’s Department of Electrical and Computer Engineering, Dr. Yury Gogotsi, Department of Materials Science and Engineering and three Ph.D. students.

Fontecchio described how the pipettes can enhance in-situ DNA sequencing. “The pipettes enable DNA to be examined inside a living cell without removing the cell from the living tissue,” he said. “This avoids culturing and/or damaging the tissue.” And the probes can aid in identifying separate drug reactions in cells. “Instead of flooding an entire cell with a drug under investigation, the drug interaction and effects with specific regions of the cell can be investigated,” he said. “Since the CNT tips have diameters smaller than some cells, small amounts of drugs can be injected to specific regions organelles within a cell.”

In their March 2007 paper, “Magnetically assembled carbon nanotube-tipped pipettes,” published in Applied Physics Letters, (Appl. Phys. Lett. 90, 103108 2007), the Drexel researchers describe nanotube probes strong enough to pierce the wall of canine kidney cell membranes. They observed negligible cell deformation, even after removing the probe from the cell 20 minutes later. With this capability, carbon nanotube-tipped pipettes could become vital to in-situ DNA sequencing and organelle-targeted drug delivery.

The team’s method uses magnetic CNTs and an external magnetic field to align the nanotubes and assemble the probes. Joshua Freedman, a NSF IGERT Fellow working with Drs. Fontecchio and Friedman, injected a solution of magnetic CNTs and optical glue into a glass pipette and used magnet CNT by polymerizing the optical glue with UV light. They demonstrated that the resulting carbon nanotube-tipped pipette was mechanically robust to perform cell injection and could transfer fluid into the pipette. Graduate students Davide Mattia and Guzeliya Korneva produced the CNTs by chemical vapor deposition into alumina templates and coated their inner walls with magnetic nanoparticles.

“The next step is to improve the pipette fabrication process to increase yield, demonstrate magnetic deflection of the CNTs and use the carbon nanotube- tipped pipettes in said cell biology and drug delivery research,” said Fontecchio, who helped to develop the pipettes.

Source: Drexel University

Explore further: New electronic stent could provide feedback and therapy—then dissolve

Related Stories

Fossil ancestor shows sharks have a bony past

1 hour ago

Most people know that sharks have a distinctive, all-cartilage skeleton, but now a fossil from Western Australia has revealed a surprise 'missing link' to an earlier, more bony form of the fish.

Cheetah robot lands the running jump (w/ Video)

1 hour ago

In a leap for robot development, the MIT researchers who built a robotic cheetah have now trained it to see and jump over hurdles as it runs—making this the first four-legged robot to run and jump over ...

Heat accelerates dry in California drought

1 hour ago

Although record low precipitation has been the main driver of one of the worst droughts in California history, abnormally high temperatures have also played an important role in amplifying its adverse ef ...

Recommended for you

Self-replicating nanostructures made from DNA

21 hours ago

(Phys.org)—Is it possible to engineer self-replicating nanomaterials? It could be if we borrow nature's building blocks. DNA is a self-replicating molecule where its component parts, nucleotides, have specific ...

Non-aqueous solvent supports DNA nanotechnology

May 27, 2015

Scientists around the world are using the programmability of DNA to assemble complex nanometer-scale structures. Until now, however, production of these artificial structures has been limited to water-based ...

Nanosilver and the future of antibiotics

May 27, 2015

Precious metals like silver and gold have biomedical properties that have been used for centuries, but how do these materials effectively combat the likes of cancer and bacteria without contaminating the ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.