New nanocomposites may mean more durable tooth fillings

April 27, 2007
New nanocomposites may mean more durable tooth fillings
A calcium phosphate nanocomposite filling in a tooth. The nanocomposite can "smartly" release decay-fighting agents to buffer against acids produced by bacteria, and rebuild the lost tooth minerals by releasing ions into the mineral-deficient area of the tooth. Credit: NIST

The mouth is a tough environment—which is why dentists do not give lifetime guarantees. Despite their best efforts, a filling may eventually crack under the stress of biting, chewing and teeth grinding, or secondary decay may develop where the filling binds to the tooth. Fully 70 percent of all dental procedures involve replacements to existing repairs, at a cost of $5 billion per year in the United States alone.

Now, however, scientists at the American Dental Association’s Paffenbarger Research Center, a joint research program at the National Institute of Standards and Technology, have shown that nanotechnology has the potential to lessen that toll by producing tooth restorations that are both stronger than any decay-fighting fillings available today, and more effective at preventing secondary decay. They report their findings in a recent issue of The Journal of Dental Research.

The researchers’ new technique solves a problem with the standard composite resin filling, a natural-looking restoration that is the method of choice when appearance is an issue. A dentist creates the filling by mixing the pure liquid resin with a powder that contains coloring, reinforcement and other materials, packing the resulting paste into the cavity, and illuminating the tooth with a light that causes the paste to polymerize and harden. For decay-fighting composite fillings, the problem arises from an additive that is included in the powder to provide a steady release of calcium and phosphate ions.

These ions are essential to the long-term success of the filling because they not only strengthen the crystal structure of the tooth itself, but buffer it against the decay-causing acid produced by bacteria in the mouth. Yet the available ion-releasing compounds are structurally quite weak, to the point where they weaken the filling as a whole.

To get around this conundrum, the Paffenbarger researchers have devised a spray-drying technique that yields particles of several such compounds, one of which being dicalcium phosphate anhydrous, or DCPA, that are about 50 nanometers across—20 times smaller than the 1-micrometer particles in a conventional DCPA powder.

Because these nanoscale particles have a much higher surface to volume ratio, they are much more effective at releasing ions, which means that much less of the material is required to produce the same effect. That, in turn, leaves more room in the resin for reinforcing fibers that strengthen the final filling. To exploit that opportunity, the Paffenbarger researchers also have developed nanoscale silica-fused fibers that produce a composite resin nearly twice as strong as the currently available commercial variety.

Citation: H.H.K. Xu, M.D. Weir, L. Sun, S. Takagi and L.C. Chow. Effects of calcium phosphate nanoparticles on Ca-PO4 composite, J Dent Res 86(4):378-383m 2007.

Source: National Institute of Standards and Technology

Explore further: Researcher unravels century-old woolly tale to find truth behind massive bones

Related Stories

New research into materials for tooth fillings

March 10, 2015

Tooth decay is a serious health problem and it is often necessary to repair cavities. Today they often use a composite filling material made of acrylate compounds, as it resembles the colour of the teeth and is reasonably ...

Faster dental treatment with new photoactive molecule

April 30, 2014

Photoactive materials are used in modern dentistry, which harden when they are exposed to light. Usually, only thin layers of up to 2 mm can be hardened, due to the limited penetration depth of light. A new dental filling ...

A new species of horse, 4.4 million years old

December 12, 2013

Two teams of researchers, including a scientist from Case Western Reserve University, have announced the discovery of a new species of fossil horse from 4.4 million-year-old fossil-rich deposits in Ethiopia.

Materials that shrink when heated

February 9, 2012

One common reason that people with fillings experience toothache is that their fillings expand at a different rate to the original tooth when, for example, drinking a hot drink. Contrary to intuition, however, not all materials ...

Recommended for you

Making nanowires from protein and DNA

September 3, 2015

The ability to custom design biological materials such as protein and DNA opens up technological possibilities that were unimaginable just a few decades ago. For example, synthetic structures made of DNA could one day be ...

Graphene made superconductive by doping with lithium atoms

September 2, 2015

(Phys.org)—A team of researchers from Germany and Canada has found a way to make graphene superconductive—by doping it with lithium atoms. In their paper they have uploaded to the preprint server arXiv, the team describes ...

For 2-D boron, it's all about that base

September 2, 2015

Rice University scientists have theoretically determined that the properties of atom-thick sheets of boron depend on where those atoms land.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.