New nanocomposites may mean more durable tooth fillings

April 27, 2007
New nanocomposites may mean more durable tooth fillings
A calcium phosphate nanocomposite filling in a tooth. The nanocomposite can "smartly" release decay-fighting agents to buffer against acids produced by bacteria, and rebuild the lost tooth minerals by releasing ions into the mineral-deficient area of the tooth. Credit: NIST

The mouth is a tough environment—which is why dentists do not give lifetime guarantees. Despite their best efforts, a filling may eventually crack under the stress of biting, chewing and teeth grinding, or secondary decay may develop where the filling binds to the tooth. Fully 70 percent of all dental procedures involve replacements to existing repairs, at a cost of $5 billion per year in the United States alone.

Now, however, scientists at the American Dental Association’s Paffenbarger Research Center, a joint research program at the National Institute of Standards and Technology, have shown that nanotechnology has the potential to lessen that toll by producing tooth restorations that are both stronger than any decay-fighting fillings available today, and more effective at preventing secondary decay. They report their findings in a recent issue of The Journal of Dental Research.

The researchers’ new technique solves a problem with the standard composite resin filling, a natural-looking restoration that is the method of choice when appearance is an issue. A dentist creates the filling by mixing the pure liquid resin with a powder that contains coloring, reinforcement and other materials, packing the resulting paste into the cavity, and illuminating the tooth with a light that causes the paste to polymerize and harden. For decay-fighting composite fillings, the problem arises from an additive that is included in the powder to provide a steady release of calcium and phosphate ions.

These ions are essential to the long-term success of the filling because they not only strengthen the crystal structure of the tooth itself, but buffer it against the decay-causing acid produced by bacteria in the mouth. Yet the available ion-releasing compounds are structurally quite weak, to the point where they weaken the filling as a whole.

To get around this conundrum, the Paffenbarger researchers have devised a spray-drying technique that yields particles of several such compounds, one of which being dicalcium phosphate anhydrous, or DCPA, that are about 50 nanometers across—20 times smaller than the 1-micrometer particles in a conventional DCPA powder.

Because these nanoscale particles have a much higher surface to volume ratio, they are much more effective at releasing ions, which means that much less of the material is required to produce the same effect. That, in turn, leaves more room in the resin for reinforcing fibers that strengthen the final filling. To exploit that opportunity, the Paffenbarger researchers also have developed nanoscale silica-fused fibers that produce a composite resin nearly twice as strong as the currently available commercial variety.

Citation: H.H.K. Xu, M.D. Weir, L. Sun, S. Takagi and L.C. Chow. Effects of calcium phosphate nanoparticles on Ca-PO4 composite, J Dent Res 86(4):378-383m 2007.

Source: National Institute of Standards and Technology

Explore further: New dental tool creates stronger bonds for fillings

Related Stories

New dental tool creates stronger bonds for fillings

October 20, 2015

Dental composites are the synthetic resins or mixtures dentists use to restore teeth to their original hardness and rigidity. Made of amalgams—mixtures of mercury, silver or tin, or composites such as silica, ceramic or ...

Biomimetic dental prosthesis

September 27, 2015

There are few tougher, more durable structures in nature than teeth or seashells. The secret of these materials lies in their unique fine structure: they are composed of different layers in which numerous micro-platelets ...

New research into materials for tooth fillings

March 10, 2015

Tooth decay is a serious health problem and it is often necessary to repair cavities. Today they often use a composite filling material made of acrylate compounds, as it resembles the colour of the teeth and is reasonably ...

Hybrid composite for root canal treatment

November 3, 2009

( -- A dentist carrying out root canal treatment will need to use a variety of compounds. These do not always bond together properly and sometimes expensive follow-up treatment has to be performed. But a new class ...

Nanotechnology may increase longevity of dental fillings

July 1, 2009

Tooth-colored fillings may be more attractive than silver ones, but the bonds between the white filling and the tooth quickly age and degrade. A Medical College of Georgia researcher hopes a new nanotechnology technique will ...

FDA concludes mercury in dental fillings not risky

July 28, 2009

(AP) -- The government declared Tuesday that silver dental fillings contain too little mercury to harm the millions who've had cavities filled with them - including young children - and that only people allergic to mercury ...

Recommended for you

Physicists develop new technique to fathom 'smart' materials

November 26, 2015

Physicists from the FOM Foundation and Leiden University have found a way to better understand the properties of manmade 'smart' materials. Their method reveals how stacked layers in such a material work together to bring ...

Mathematicians identify limits to heat flow at the nanoscale

November 24, 2015

How much heat can two bodies exchange without touching? For over a century, scientists have been able to answer this question for virtually any pair of objects in the macroscopic world, from the rate at which a campfire can ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.