Nano Structures Can Pose Big Measurement Problems

April 27, 2007

Materials scientists will tell you that to best understand, characterize and eventually utilize the properties of a specific material, you have to be able to define how the atoms within it are arranged. In the case of common crystals, there are numerous methods, such as X-ray diffraction, by which this can be done.

Not so for nanostructured materials (structures with atomic arrangements at a scale of 1-100 nanometers, or between 5 to 1,000 atoms in size) where the inability to determine atomic order with high precision has been dubbed the “nanostructure problem.”

In a paper published in the April 27 Science, researchers Igor Levin at the National Institute of Standards and Technology and Simon J.L. Billinge at Michigan State University reviewed various classes of nanostructured materials, listed the array of methods currently used to study their atomic makeup and defined the problems inherent with each one.

Overall, the authors state that while many methods exist for probing the atomic structure on the nanoscale, no single technique can provide a unique structural solution.

The authors conclude their paper by calling for a coordinated effort by researchers to develop a coherent strategy for a comprehensive solution of the “nanostructure problem” using inputs from multiple experimental methods and theory.

Citation: S.J.L. Billinge and I. Levin. The problem with determining atomic structure at the nanoscale. Science, 316: 5823, April 27, 2007.

Source: National Institute of Standards and Technology

Explore further: First results of NSTX-U research operations presented

Related Stories

Finding the lightest superdeformed triaxial atomic nucleus

October 20, 2016

The nuclei of atoms of heavy elements are not necessarily spherical; they may be variously extended or flattened along one, two or even three axes. An international team of physicists, led by scientists from the Institute ...

Green hydrogen production using algal proteins

October 20, 2016

We are increasingly thinking about hydrogen as a successor of crude oil—for instance, through the use of hydrogen fuel cells. But where will the hydrogen come from? Industrial or domestic bioreactors using green algae could ...

Graphene cracks the glass corrosion problem

October 18, 2016

Researchers at the Center for Multidimensional Carbon Materials (CMCM), within the Institute for Basic Science (IBS) have demonstrated graphene coating protects glass from corrosion. Their research, published in ACS Nano, ...

Recommended for you

Nano-decoy lures human influenza A virus to its doom

October 25, 2016

To infect its victims, influenza A heads for the lungs, where it latches onto sialic acid on the surface of cells. So researchers created the perfect decoy: A carefully constructed spherical nanoparticle coated in sialic ...

New method increases energy density in lithium batteries

October 24, 2016

Yuan Yang, assistant professor of materials science and engineering at Columbia Engineering, has developed a new method to increase the energy density of lithium (Li-ion) batteries. He has built a trilayer structure that ...

Nanofiber coating prevents infections of prosthetic joints

October 24, 2016

In a proof-of-concept study with mice, scientists at The Johns Hopkins University show that a novel coating they made with antibiotic-releasing nanofibers has the potential to better prevent at least some serious bacterial ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.