Hey, WIMPs: Beware of Dwarf

April 3, 2007 By Alison Drain
Hey, WIMPs: Beware of Dwarf
Arrows in the center of this image point toward the supermassive black hole at the galactic center of the Milky Way galaxy. GLAST data may soon provide evidence of WIMP-burning stars nearby. Credit: European Southern Observatory

Stars may be bullies in their old age. White dwarfs—dense, collapsed stars in their final stage of life—could be skilled at swallowing and annihilating weakly interacting massive particles (WIMPs). These particles may constitute a large portion of the dark matter in the universe, and could form extremely dense concentrations near supermassive black holes.

Physicists Igor Moskalenko and Lawrence Wai plan to glean GLAST data to learn whether these concentrations of dark matter exist. If they do, WIMP-swallowing stars could reveal the secrets of black holes.

Their paper will be published in the April 10 issue of Astrophysical Journal Letters.

"This research could reveal a completely new kind of star, and could provide insight into how supermassive black holes evolve," Wai said. "We're very excited about this possibility."

A few bright stars are known to orbit very close to the supermassive black hole at our galaxy's center. WIMPs may concentrate near this black hole, where white dwarfs sweeping close by could efficiently capture and "burn," or annihilate, many of them. Moskalenko and Wai propose that using GLAST to find dark matter near the supermassive black hole could implicate stars seen orbiting nearby as thriving WIMP eaters.

Their hypothesis will soon be tested when GLAST collects gamma-ray data and scientists search for dark-matter annihilations near our galaxy's supermassive black hole. If it were to be found, a spike in dark matter concentration near the black hole would betray much about the nature of our universe.

"The observation of stars orbiting close to the supermassive black hole at the center of our galaxy was a huge discovery," Wai said. "If some of those stars are WIMP burners, they could provide unique information on dark matter structure."

Source: Stanford Linear Accelerator Center

Explore further: Astrophysicists find supermassive black holes in quasar nearest Earth

Related Stories

Discovering dust-obscured active galaxies as they grow

August 27, 2015

A group of researchers from Ehime University, Princeton University, and the National Astronomical Observatory of Japan (NAOJ) among others has performed an extensive search for Dust Obscured Galaxies (DOGs) using data obtained ...

How do stars go rogue?

August 25, 2015

Rogue stars are moving so quickly they're leaving the Milky Way, and never coming back. How in the universe could this happen?

Recommended for you

Seeing quantum motion

August 28, 2015

Consider the pendulum of a grandfather clock. If you forget to wind it, you will eventually find the pendulum at rest, unmoving. However, this simple observation is only valid at the level of classical physics—the laws ...

A little light interaction leaves quantum physicists beaming

August 24, 2015

A team of physicists at the University of Toronto (U of T) have taken a step toward making the essential building block of quantum computers out of pure light. Their advance, described in a paper published this week in Nature ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.