Hey, WIMPs: Beware of Dwarf

Apr 03, 2007 By Alison Drain
Hey, WIMPs: Beware of Dwarf
Arrows in the center of this image point toward the supermassive black hole at the galactic center of the Milky Way galaxy. GLAST data may soon provide evidence of WIMP-burning stars nearby. Credit: European Southern Observatory

Stars may be bullies in their old age. White dwarfs—dense, collapsed stars in their final stage of life—could be skilled at swallowing and annihilating weakly interacting massive particles (WIMPs). These particles may constitute a large portion of the dark matter in the universe, and could form extremely dense concentrations near supermassive black holes.

Physicists Igor Moskalenko and Lawrence Wai plan to glean GLAST data to learn whether these concentrations of dark matter exist. If they do, WIMP-swallowing stars could reveal the secrets of black holes.

Their paper will be published in the April 10 issue of Astrophysical Journal Letters.

"This research could reveal a completely new kind of star, and could provide insight into how supermassive black holes evolve," Wai said. "We're very excited about this possibility."

A few bright stars are known to orbit very close to the supermassive black hole at our galaxy's center. WIMPs may concentrate near this black hole, where white dwarfs sweeping close by could efficiently capture and "burn," or annihilate, many of them. Moskalenko and Wai propose that using GLAST to find dark matter near the supermassive black hole could implicate stars seen orbiting nearby as thriving WIMP eaters.

Their hypothesis will soon be tested when GLAST collects gamma-ray data and scientists search for dark-matter annihilations near our galaxy's supermassive black hole. If it were to be found, a spike in dark matter concentration near the black hole would betray much about the nature of our universe.

"The observation of stars orbiting close to the supermassive black hole at the center of our galaxy was a huge discovery," Wai said. "If some of those stars are WIMP burners, they could provide unique information on dark matter structure."

Source: Stanford Linear Accelerator Center

Explore further: On-demand X-rays at synchrotron light sources

Related Stories

Magnetar near supermassive black hole delivers surprises

May 14, 2015

In 2013, astronomers announced they had discovered a magnetar exceptionally close to the supermassive black hole at the center of the Milky Way using a suite of space-borne telescopes including NASA's Chandra ...

Astronomers baffled by discovery of rare quasar quartet

May 14, 2015

Using the W. M. Keck Observatory in Hawaii, a group of astronomers led by Joseph Hennawi of the Max Planck Institute for Astronomy have discovered the first quadruple quasar: four rare active black holes ...

Chandra suggests black holes gorging at excessive rates

Apr 30, 2015

A group of unusual giant black holes may be consuming excessive amounts of matter, according to a new study using NASA's Chandra X-ray Observatory. This finding may help astronomers understand how the largest ...

NuSTAR captures possible 'screams' from zombie stars

Apr 30, 2015

Peering into the heart of the Milky Way galaxy, NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) has spotted a mysterious glow of high-energy X-rays that, according to scientists, could be the "howls" ...

Recommended for you

On-demand X-rays at synchrotron light sources

15 hours ago

Consumers are now in the era of "on-demand" entertainment, in which they have access to the books, music and movies they want thanks to the internet. Likewise, scientists who use synchrotron light sources ...

New model sheds light on 'flocking' behaviour

23 hours ago

Understanding how turbulence can alter the shape and course of a flock of birds, a swarm of insects or even an algal bloom could help us to better predict their impact on the environment.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.