Genes set scene for metastasis

April 11, 2007

Biologists at Memorial Sloan-Kettering Cancer Center (MSKCC) have identified a set of genes expressed in human breast cancer cells that work together to remodel the network of blood vessels at the site of the primary tumor. These genes were also found to promote the spread of breast cancer to the lungs. The study, conducted in mice and reported in this week's Nature, helps to explain how cancer metastasis can occur and highlights targets for therapeutic treatment.

Metastasis — the leading cause of mortality in cancer patients — entails numerous biological functions that collectively enable cancerous cells from a primary site to disseminate and overtake distant organs. A number of genes are already known to contribute to the spread of breast cancer cells to the lungs.

Using genetic and pharmacological approaches, Joan Massagué, PhD, Chair of MSKCC's Cancer Biology and Genetics Program and a Howard Hughes Medical Institute Investigator, and colleagues showed how four genes facilitate the formation of new tumor blood vessels, the release of cancer cells into the bloodstream, and the penetration of tumor cells from the bloodstream into the lung. The gene set comprises EREG (an epidermal growth factor receptor ligand), the cyclooxygenase COX2, and MMP1 and MMP2 (matrix enzymes that are expressed in human breast cancer cells).

The researchers conclude that drug combinations that target one or more of the proteins encoded by these genes may prove useful for treating metastatic breast cancer.

Source: Memorial Sloan-Kettering Cancer Center

Explore further: Designer molecule shines a spotlight on mysterious four-stranded DNA

Related Stories

MicroRNAs are digested, not absorbed

September 8, 2015

There has been a lot of controversy in recent years over the issue of whether exogenous microRNA molecules can be absorbed from food and even have a physiological effect. A new study by ETH professor Markus Stoffel using ...

Researchers develop a method for controlling gene activation

September 8, 2015

Researchers at the University of Helsinki, Finland, have developed a new method which enables the activation of genes in a cell without changing the genome. Applications of the method include directing the differentiation ...

New findings shed light on fundamental process of DNA repair

September 8, 2015

Inside the trillions of cells that make up the human body, things are rarely silent. Molecules are constantly being made, moved, and modified—and during these processes, mistakes are sometimes made. Strands of DNA, for ...

Dually noted: New CRISPR-Cas9 strategy edits genes two ways

September 7, 2015

The CRISPR-Cas9 system has been in the limelight mainly as a revolutionary genome engineering tool used to modify specific gene sequences within the vast sea of an organism's DNA. Cas9, a naturally occurring protein in the ...

Making nanowires from protein and DNA

September 3, 2015

The ability to custom design biological materials such as protein and DNA opens up technological possibilities that were unimaginable just a few decades ago. For example, synthetic structures made of DNA could one day be ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

( -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.