2 heads are better than 1: 2 dysfunctional DNA repair pathways kill tumor cells

April 13, 2007

Individuals who inherit two mutant copies of any one of about 12 genes that make the proteins of the Fanconi Anemia (FA) pathway develop FA, which is characterized by increased incidence of cancer and bone marrow failure, among other things. However, individuals with just a single mutant copy of one of these genes are also at increased risk of developing cancer.

This occurs when the remaining "good" copy of the gene becomes mutated in a specific cell type, allowing that cell type to form a tumor. However, hope of a new treatment for these cancers has now been provided by researchers from the Dana-Farber Cancer Institute in Boston who suggest that inhibiting the protein ATM might kill these cancer cells.

In the study, which appears online on April 12 in advance of publication in the May print issue of the Journal of Clinical Investigation, Alan D'Andrea and colleagues show that loss of ATM function in human cell lines with a dysfunctional FA pathway caused the cells to die.

The dying cells were characterized by high levels of DNA breakage, which is consistent with the fact that FA pathway proteins and ATM are important regulators of two distinct DNA repair pathways. It therefore seems that the ATM pathway of DNA repair keeps the FA pathway–deficient tumor cells alive and that loss of this pathway results in tumor cell death. As FA pathway–deficient tumor cells were shown to be sensitive to an inhibitor of ATM, the authors suggest that ATM might provide a therapeutic target for the treatment of individuals with FA pathway–deficient tumors.

Source: Journal of Clinical Investigation

Explore further: Researchers discover second protective role for tumor-suppressor

Related Stories

Tumor mutations can predict chemo success

August 6, 2009

(PhysOrg.com) -- New work by MIT cancer biologists shows that the interplay between two key genes that are often defective in tumors determines how cancer cells respond to chemotherapy.

A better way to target tumors

November 15, 2010

In the past 40 years, scientists have learned a great deal about how cells become cancerous. Some of that knowledge has translated to new treatments, but most of the time doctors are forced to rely on standard chemotherapy ...

DNA Repair in Mammal Embryos Is a Matter of Timing

June 19, 2006

Investigators at St. Jude Children's Research Hospital have discovered that the cells of the developing nervous system of the mammalian embryo have an exquisite sense of timing when it comes to fixing broken chromosomes: ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

(PhysOrg.com) -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.