Novel experiments on cement yield concrete results

Apr 02, 2007

Using a brace of the most modern tools of materials research, a team from the National Institute of Standards and Technology and Northwestern University has shed new light on one of mankind’s older construction materials—cement.

Their refinements to our understanding of how cement and concrete actually work, reported this week in Nature Materials, ultimately may make possible improvements in the formulation and use of cement that could save hundreds of millions of dollars in annual maintenance and repair costs for concrete structures and the country’s infrastructure.

Cement may be the world’s most widely used manufactured material—more than 11 billion metric tons are consumed each year—but it also is one of the more complex. And while it was known to the Romans, who used it to good effect in the Colosseum and Pantheon, questions still remain as to just how it works, in particular how it is structured at the nano- and microscale, and how this structure affects its performance.

Cement is something of a paradox. It requires just the right amount of water to form properly—technically it’s held together by a gel, a complex network of nanoparticles called calcium silicate hydrate (C-S-H) that binds a significant amount of water within its structure. But once the cement has set, the C-S-H structure retains a tough, unchanging integrity for centuries, even in contact with water. To date, attempts to pinpoint the amounts and different roles of water within the C-S-H in cement paste have required taking the water out, either by drying or chemical methods. The NIST/Northwestern researchers instead combined structural data from small-angle neutron scattering experiments at the NIST Center for Neutron Research and from an ultrasmall-angle X-ray scattering instrument built by NIST at the Advanced Photon Source at Argonne National Laboratory. Their experiments are the first to classify water by its location in the cured cement.

As a result, the researchers were able to distinguish—and measure—the difference between water physically bound within the internal structure of the solid C-S-H nanoparticles and adsorbed or liquid water between the nanoparticles. They also measured a nanoscale calcium hydroxide structure that co-exists with the C-S-H gel.

The new data, which imply significantly different values for the formula and density of the C-S-H gel than previously supposed, have implications for defining the chemically active surface area within cement, and for predicting concrete properties. They also may lead to a better understanding of the contribution of the nanoscale structure of cement to its durability, and how to improve it.

Source: NIST

Explore further: Team maps distribution of carbon nanotubes in composite materials

Related Stories

Fighting climate change with membrane-based cement technology

Jun 12, 2015

The cement industry is one of the largest sources worldwide of carbon emissions, accounting for around five per cent of global emissions. New technologies being developed by the Norwegian University of Science and Technology ...

Sustainability of the built environment

May 08, 2015

In times of limited resources and continued evidence of significant climate change, sustainability is increasingly regarded as a topic of global importance. Consider areas such as design, energy, and materials: ...

Lack of oxygen in the groundwater

Apr 29, 2015

Spring has arrived in Europe with mild temperatures and sunshine. Where just a few weeks ago the ground was frozen and partly covered in snow and ice, it is now thawing. This doesn't only have an impact on ...

Natural nanocrystals shown to strengthen concrete

Mar 31, 2015

Cellulose nanocrystals derived from industrial byproducts have been shown to increase the strength of concrete, representing a potential renewable additive to improve the ubiquitous construction material.

Recommended for you

Towards graphene biosensors

Jun 24, 2015

For the first time, a team of scientists has succeeded in precisely measuring and controlling the thickness of an organic compound that has been bound to a graphene layer. This might enable graphene to be ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.