When smell cells fail they call in stem cell reserves

April 29, 2007

Hopkins researchers have identified a backup supply of stem cells that can repair the most severe damage to the nerves responsible for our sense of smell. These reservists normally lie around and do nothing, but when neighboring cells die, the scientists say, the stem cells jump into action. A report on the discovery will appear online next week in Nature Neuroscience.

“These stem cells act like the Army Reserves of our nose,” explains lead author Randall Reed, Ph.D., a professor of neuroscience at Johns Hopkins, “supporting a class of active-duty stem cells that help repair normal wear and tear. They don’t come in until things are really bad.”

The only nerve cells in the body to run directly from the brain to the outside world, olfactory cells are under constant assault from harsh chemicals that one might happen to catch a whiff of by accident, risking damage or death.

To figure out how the olfactory system repairs severely damaged nerve cells, Reed’s team exposed mouse olfactory nerves to a cloud of toxic methyl-bromide gas. Methyl bromide kills not only olfactory nerve cells but also neighboring, non-nerve cells in the nasal passage. Three weeks after chemical exposure, the researchers examined nasal cells to see which, if any, had grown back.

They discovered that the newly grown cells, both nerve and non-nerve, grew from HBCs-a population of cells not previously known for repair abilities. “We were stunned because HBCs normally don’t grow much or do anything,” says Reed. “And the most surprising thing is that HBCs can grow into both nerves and non-nerve cells; they do so by generating the other active type of nasal stem cell.”

The team then went back and looked at nerve repair under less damaging circumstances where only the olfactory nerve cells are killed. In this situation, the HBCs did nothing to repair the damaged cells; rather, they allowed the previously known stem cells to do all the repair work.

“The ability to smell is crucial for eating, mating and survival, and it’s important that the olfactory system be fully operational all the time,” explains Reed. “The HBCs act as a fail-safe to ensure continued function of the sense of smell.”

The discovery of these two distinct types of stem cells in one neural tissue is a first, says Reed, who is interested to see if other types of nerves in the body have similar repair mechanisms in play.

Source: Johns Hopkins Medical Institutions

Explore further: Team finds the way to generate potentially safer stem cells in the laboratory

Related Stories

Researchers control embryonic stem cells with light

August 26, 2015

UC San Francisco researchers have for the first time developed a method to precisely control embryonic stem cell differentiation with beams of light, enabling them to be transformed into neurons in response to a precise external ...

Making bone in the lab

August 20, 2015

Every year there are around 60,000 hip, 50,000 forearm and 40,000 vertebral fractures in the UK. At the Bone and Joint Research Group at the University of Southampton, Professor Richard Oreffo and team have made pioneering ...

Sex among eukaryotes is far more common than once believed

July 28, 2015

(Phys.org)—For a long time, biologists have considered sex to be an inherent trait of multicellular life, while microbial eukaryotes were considered to be either optionally sexual or purely clonal. From this perspective, ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

(PhysOrg.com) -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.