A new study of living cells could revolutionize the way we test drugs

Apr 11, 2007

Researchers have made a breakthrough by detecting the electrical equivalent of a living cell’s last gasp. The work takes them a step closer to both seeing the ‘heartbeat’ of a living cell and a new way to test drugs.

To stay alive, individual biological cells must transfer electrically charged particles, called ions across their cell membranes. This flow produces an electrical current that could, in principle, be detected with sensitive enough equipment. The recognition of such electrical activity would provide a kind of ‘cellular cardiogram’, allowing the daily functioning of the cell to be monitored in a similar way to a cardiograph showing the workings of a human heart.

With funding from the Engineering and Physical Sciences Research Council (EPSRC), Professor Andre Geim at the University of Manchester and his team have set out to make the first measurement of a cellular ‘heartbeat’.

"Once we know the average or usual pattern of electrical activity in a cell, we can see how different drugs affect it," says Professor Geim. This would put an early safeguard into the system that could be applied long before the drug was tested on animals or even humans. In addition, the electrical activity test could be used to monitor the effects of pollution on naturally occurring micro-organisms in the environment.

To detect a cell’s normal activity, Andre Geim and fellow researchers modified apparatus used originally to detect weak magnetic fields in superconductors*. Unfortunately, these modifications reduced the sensitivity of the technique, and the normal activity of the yeast cell could not be detected. This is the first time such a technique has been used on a living cell.

Not to be defeated, the researchers went about livening things up. They chose to invoke what any self-respecting party-goer would: alcohol. "We added ethanol – which is essentially vodka – to provoke a response from the cell. Ethanol is known to increase the transparency of cellular membranes which we hoped would give a signal we could detect," says Dr Irina Barbolina, who carried out the experiments.

It worked. As soon as the yeast got a taste of the vodka, the probe registered an electrical signal. A drunken hiccup perhaps? "It was probably the last gasp of the dying cell," says Professor Geim. The researchers had added so much ethanol that it poisoned the cell.

Although not the cardiogram they had hoped for, the electrical signal was the smallest yet detected from a living cell, around 100 times smaller than anything previously detected. It added up to an electrical current of just 10 moving electrons. It has given the team confidence that equipment sensitive enough to measure a cell’s heartbeat can be developed.

"We already have some ideas about how to improve the sensitivity of the detector in water and next time we will also use a more active micro-organism such as an amoeba. Yeast is a subdued organism and doesn’t generate much activity," says Professor Geim. "Probably, the most important outcome is that we defined an important goal. Cellular cardiograms can no longer be seen as absurd or science-fictional. If not us then someone else will soon develop a technique sensitive enough for such studies."

Source: Engineering and Physical Sciences Research Council

Explore further: Behind the scenes with a Los Angeles mountain lion expert

Related Stories

Better batteries to break dependence on fossil fuels

Apr 29, 2015

By 2050 world population is projected to reach 10 billion people, and energy needs will double from what we require today. "We are nowhere near ready," said Héctor D. Abruña at a Charter Day Weekend lecture, ...

Listening under the ice

Apr 29, 2015

The watery world under winter's ice is a mystery. It's also a world full of sound. Now, as the days lengthen and the ice is retreating, researchers at Michigan Technological University are wrapping up their ...

Weighing and imaging molecules one at a time

Apr 27, 2015

Building on their creation of the first-ever mechanical device that can measure the mass of individual molecules, one at a time, a team of Caltech scientists and their colleagues have created nanodevices ...

Micro fingers for arranging single cells

Apr 24, 2015

Functional analysis of a cell, which is the fundamental unit of life, is important for gaining new insights into medical and pharmaceutical fields. For efficiently studying cell functions, it is essential ...

Cell's protein-making machines shift modes under stress

Apr 23, 2015

Similar to a hybrid car that switches from gas to electric as it drives on major highways and secondary roads, Cornell researchers have discovered that the cell's protein-making machinery, called ribosomes, ...

Plausibility of the vibrational theory of smell

Apr 20, 2015

The vibrational theory of olfaction explains several aspects of odorant detection that theories based purely on receptor binding do not. It provides for additional selectivity through receptors that are tuned ...

Recommended for you

Hitting the borders of expansion

1 hour ago

Why does a species not adapt to an ever-wider range of conditions, gradually expanding its geographical range? In their paper published on May 5 in PNAS (Proceedings of the National Academy of Sciences), Jitka Polecho ...

Fire linked to dieback spread

2 hours ago

Fire has the potential to increase the range and severity of Phytophthora dieback in native plant communities infected with the disease, suggests a study at the Stirling Range National Park near Albany.

How mixing light with salt makes a smolt?

2 hours ago

For decades, researchers have tried to find out what regulates changes in salmon when they transform from being freshwater to saltwater fish. Now they have come a little closer to an answer.

Australia—riding on the insect's back

3 hours ago

As you may have spotted, the title of this article is a cheeky reference to the famous saying that Australia rides on the back of a particular woolly ruminant. The reference dates back to 1894, when the wool ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.