Alzheimer's, Parkinson's, type 2 diabetes similar at molecular level

April 30, 2007
Alzheimer's, Parkinson's, type 2 diabetes similar at molecular level
A montage of micro-crystals is used to determine the microscopic structures of Alzheimer´s, other diseases, with the image of a U.S. dime superimposed. Credit: UCLA

Alzheimer's disease, Parkinson's disease, type 2 diabetes, the human version of mad cow disease, and other degenerative diseases are more closely related at the molecular level than scientists realized, a team reports this week in an advanced online publication of the journal Nature.

While still preliminary, the research, could help scientists develop tools for diagnosing such diseases, and potentially for treating them through "structure-based drug design," said David Eisenberg, a UCLA chemist and molecular biologist who is part of the research team.

The researchers studied the harmful rope-like structures known as amyloid fibrils--linked protein molecules that form in the brain. The fibrils contain a stack of water-tight "molecular zippers."

"With each disease, a different protein transforms into amyloid fibrils, but all of these diseases are similar at the molecular level," Eisenberg said.

If the molecular zipper is universal in amyloid fibrils, as Eisenberg believes, is it possible to pry open the zipper or prevent its formation?

Eisenberg's research team used X-ray analysis and a sophisticated computer algorithm to study proteins known to be associated with human diseases. When the computer said a protein will form an amyloid fibril, it almost always did. And one team member is experimenting with various compounds to break up the fibrils.

"Structural analysis of micro-crystals of proteins is an example of how basic research can have a profound impact on our understanding of health, biotechnology and other practical issues," said Parag Chitnis, program director in National Science Foundation's (NSF) Division of Molecular and Cellular Biosciences.

Source: National Science Foundation

Explore further: Time travel with the molecular clock

Related Stories

Time travel with the molecular clock

November 23, 2015

Migration isn't a new phenomenon, but new insights suggest that modern-day Europeans actually have at least three ancestral populations. This finding was published by Johannes Krause and prominently featured on the cover ...

Scientists create malaria-blocking mosquitoes

November 23, 2015

Using a groundbreaking gene editing technique, University of California scientists have created a strain of mosquitoes capable of rapidly introducing malaria-blocking genes into a mosquito population through its progeny, ...

Understanding the fruit fly's nose

November 24, 2015

How odours influence actions is one of the fundamental questions in neuroscience. Richard Benton, associate professor at the Center for Integrative Genomics at the University of Lausanne, follows the molecular trail of chemical ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

( -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.