Researchers Report Ability to Detect Cancer at Earliest, Curable Stage

April 20, 2007

Researchers at the Moores Cancer Center at the University of California, San Diego report that they have developed a new method for detecting cancer very early in its development, when it consists of just a few cells. The best existing detection methods are not able to detect a tumor until it consists of about one million cells.

The paper*, published in the April 18 issue of the online journal PLoS ONE, describes a series of proof-of-concept experiments in which the researchers, working with two cancer cell lines, were able to select out and amplify tiny amounts of cancer-causing DNA in the presence of more than 99.9 percent of normal DNA. Current methods for identifying deleted DNA would not work in clinical settings because they require isolation of relatively pure cancer cells. This is not feasible for clinical samples, which typically contain large amounts of the person’s normal cells.

“We have developed a new technology for very early detection of virtually any type of solid-tumor cancer based upon damaged DNA, which is where all cancers begin,” said co-author Dennis A. Carson, M.D., professor of medicine and director of the Moores Cancer Center. “We are now working with engineers toward the fabrication of the clinical devices that will enable this to be widely used in patients.”

Carson said they are several years away from clinical testing, but ultimately individuals will be able to be screened for DNA markers of cancer cells using simple clinical samples such as blood or urine. Using this same technology, physicians will be able to easily and inexpensively monitor the status of patients by looking for the DNA markers. If the treatment worked, there would be no mutated DNA and the patient would be cured. Such monitoring would also shorten the time needed to determine if the treatment is not working so another approach could be instituted.

The technology, called Primer Approximation Multiplex PCR (PAMP), is based upon an enzyme reaction that only works when a piece of DNA has been deleted or is abnormally joined to another piece of DNA, according to co-author Yu-Tsueng Liu, M.D., Ph.D., assistant project scientist and director of the biomarker laboratory at the Moores Cancer Center. The exact location of the mutation does not matter. The method will detect any mutated DNA in the presence of normal DNA, and amplify only the mutant molecules.

Liu explains: “When a cancer cell mutates, it often brings together two pieces of DNA that are normally apart. We have developed an enzyme reaction that works well only when two DNA pieces that are normally separated are close together. This technology amplifies the mutant DNA and then uses a microarray to identify the specific mutation. Our experiments were conducted on a specific gene mutation that is well-known for its role in cancer, called CDKN2A, but this technology would work on any DNA abnormality.”

Source: UCSD

Explore further: DNA chip offers big possibilities in cell studies

Related Stories

DNA chip offers big possibilities in cell studies

August 25, 2016

A UT Dallas physicist has developed a novel technology that not only sheds light on basic cell biology, but also could aid in the development of more effective cancer treatments or early diagnosis of disease.

Using light to control genome editing

August 25, 2016

The genome-editing system known as CRISPR allows scientists to delete or replace any target gene in a living cell. MIT researchers have now added an extra layer of control over when and where this gene editing occurs, by ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Cow embryos reveal new type of chromosome chimera

May 27, 2016

I've often wondered what happens between the time an egg is fertilized and the time the ball of cells that it becomes nestles into the uterine lining. It's a period that we know very little about, a black box of developmental ...

Shaving time to test antidotes for nerve agents

February 29, 2016

Imagine you wanted to know how much energy it took to bike up a mountain, but couldn't finish the ride to the peak yourself. So, to get the total energy required, you and a team of friends strap energy meters to your bikes ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.