Targeting tumors the natural way

Mar 25, 2007

By mimicking Nature's way of distinguishing one type of cell from another, University of Wisconsin-Madison scientists now report they can more effectively seek out and kill cancer cells while sparing healthy ones.

The new tumor targeting strategy, presented today at the annual national meeting of the American Chemical Society, cleverly harnesses one of the body's natural antibodies and immune responses. "The killing agent we chose is already in us," says UW-Madison chemistry professor Laura Kiessling, who led the work with postdoctoral researcher Coby Carlson. "It's just not usually directed toward tumor cells."

In a series of cell-based experiments, the researchers' system recognized and killed only those cells displaying high levels of receptors known as integrins. These molecules, which tend to bedeck the surfaces of cancer cells and tumor vasculature in large numbers, have become important targets in cancer research.

In contrast, an established tumor-homing agent linked to the cell toxin doxorubicin destroyed cells even when they expressed very little integrin, indicating this strategy has the potential to kill cancerous and healthy cells indiscriminately.

"This study suggests that the cell recognition mode we used can direct an endogenous immune response to destroy cancer cells selectively," says Kiessling. "We think this could lead to a new class of therapeutic agents not only for cancer but also for other diseases involving harmful cells."

Cancer cells typically display higher levels of certain receptors on their surfaces than do normal cells, a fact that allows scientists to pinpoint tumor cells lurking among the body's scores of cell types. A popular approach employs a cell-binding agent, such as a monoclonal antibody, that is powerfully attracted to the target receptor and holds fast to any cell displaying it.

Although this strategy has benefits, it's not natural, says Kiessling. Cell recognition in living systems instead involves binding agents that attach only weakly to any single target receptor, and thus stick to cells only when several receptors are displayed together. These weak "multivalent" interactions cut down on cases of mistaken identity, because if the agent contacts the wrong cell type, it can be easily displaced.

The team got the idea to mimic this process from efforts to transplant pig organs into primates. The surfaces of most mammalian and bacterial cells express large amounts of a carbohydrate, called alpha-Gal in scientific shorthand, while the cells of humans and other higher primates do not. What humans and primates do produce in abundance is an antibody against the carbohydrate, called anti-Gal.

When scientists tried transplanting pig organs into primates, the anti-Gal antibodies bound to the alpha-Gal on the organ's cells, unleashing a potent immune response that caused immediate organ rejection. But true to natural cell recognition, the immune response occurs only when clusters of many alpha-Gal molecules are present for anti-Gal to bind with.

Armed with this knowledge, Kiessling's group modified an agent known to bind tightly to integrin and tethered it to alpha-Gal. When they mixed this molecule with cells displaying high levels of integrin, the agent, by attaching to the receptor, decorated the cells with large amounts of alpha-Gal. In cell cultures containing human serum, the alpha-Gal then elicited the cell-destroying immune reaction.

In cells with low concentrations of integrin, the agent still bound, but the resulting levels of alpha-Gal weren't sufficient to elicit the immune response, and the cells survived. The same wasn't true if the cell-binding agent delivered doxorubicin to cells instead: They were killed regardless of the amount of integrin they carried.

Because target receptors on cancer cells usually reside on healthy cells, too - albeit in lower numbers - therapies aimed at these receptors are always expected to have debilitating side effects. That's why Kiessling's approach holds such promise.

"What we've shown is that you don't need a receptor that's found solely on tumor cells," she says. "You just need one that's found in significantly higher numbers on cancerous cells than on normal ones."

Source: University of Wisconsin-Madison

Explore further: Second-line cetuximab active beyond progression in quadruple wild-type patients with mCRC

Related Stories

Researchers identify new class of antifungal agents

Jun 23, 2015

Researchers have identified a new class of antifungals to treat the more than 300 million people worldwide who develop serious fungal infections. The research is described in the current issue of mBio, the online open-access journa ...

Mimicking the body on a chip for new drug testing

Jun 10, 2015

Scientists in an EU project have developed a microfluidic chip that simultaneously analyses the reactions of several human organ tissues when they come into contact with candidates for new drugs. The ground-breaking ...

Recommended for you

Spicy treatment the answer to aggressive cancer?

Jul 03, 2015

It has been treasured by food lovers for thousands of years for its rich golden colour, peppery flavour and mustardy aroma…and now turmeric may also have a role in fighting cancer.

Cancer survivors who smoke perceive less risk from tobacco

Jul 02, 2015

Cancer survivors who smoke report fewer negative opinions about smoking, have more barriers to quitting, and are around other smokers more often than survivors who had quit before or after their diagnosis, according to a ...

Melanoma mutation rewires cell metabolism

Jul 02, 2015

A mutation found in most melanomas rewires cancer cells' metabolism, making them dependent on a ketogenesis enzyme, researchers at Winship Cancer Institute of Emory University have discovered.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.