Stress and nerve cells survival in rats; finding may open widow for depression treatment

March 13, 2007

A single, socially stressful situation can kill off new nerve cells in the brain region that processes learning, memory, and emotion, and possibly contribute to depression, new animal research shows.

Researchers found that in young rats, the stress of encountering aggressive, older rats did not stop the generation of new nerve cells—the first step in the process of neurogenesis. But stress did prevent the cells, located in the hippocampus, from surviving, leaving fewer new neurons for processing feelings and emotions. The hippocampus is one of two regions of the brain that continues to develop new nerve cells throughout life, in both rats and humans. The reduction of neurogenesis could be one cause of depression, says senior author Daniel Peterson, PhD, of the Rosalind Franklin University of Medicine and Science, near Chicago. His team reports their findings in the March 14 issue of The Journal of Neuroscience.

"This is strong evidence that the effects of social stress on neurogenesis occur after a delay of 24 hours or more, providing a possible time window for treatment after acute episodes of stress," says Henriette van Praag, PhD, of the Salk Institute for Biological Studies.

When Peterson and his research team put a young rat in a cage with two older rats for 20 minutes, the resident rats quickly pinned down and, in many cases, bit the intruder. The team reported that intruder rats were fearful and acted depressed around the bigger, more mature animals and had stress hormone levels six times as high as young rats that didn't experience a stressful encounter.

Examining the rats' brains under a microscope, the scientists discovered that even with high levels of stress hormones, the young, stressed rats generated as many new cells as their unstressed counterparts. Previous research had led some to think that hormone levels played a role in blocking the generation of new cells or caused them to die early on. But a week after the encounter, the team found that only a third of the cells generated under stress had survived. Long-term survival of nerve cells was also compromised: When Peterson's team marked newborn cells in the hippocampus, subjected rats to stress a week later, then examined brain tissue at the end of a month, they counted a third fewer fully developed nerve cells.

"The next step is to understand how stress reduced this survival," says Peterson. "We want to determine if anti-depressant medications might be able to keep these vulnerable new neurons alive."

Source: Society for Neuroscience

Explore further: Improving toxicity prediction with cutting-edge data modelling

Related Stories

Learning how muscle cells feel the pull of gravity

September 30, 2015

People can easily feel the presence - or absence - of gravity. Our individual cells actually may be able to sense gravity, too, and that ability could play a role in the loss of muscle that occurs when humans spend time in ...

Stress disrupts human thinking, but the brain can bounce back

January 27, 2009

( -- A new neuroimaging study on stressed-out students suggests that male humans, like male rats, don’t do their most agile thinking under stress. The findings, published this month in the Proceedings of the ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

( -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.