Robotic Telescope unravels mystery of cosmic blasts

March 15, 2007
Figure showing the links between the gamma ray burst detection and follow up observations. (1) Gamma Ray Burst, GRB 060418, explodes and emits high-energy gamma rays. (2) and (3) Swift satellite detects gamma rays and sends notification of sky location to ground telescopes. (4) Liverpool Telescope (LT) on mountain top on Canary island of La Palma receives notification and immediately points to correct part of sky to begin to capture optical light from GRB afterglow. (5) Polarisation image taken with LT polarimeter, RINGO, is transmitted to the Astrophysics Institute at Liverpool John Moores University for analysis by scientists. Credit: Dr Carole Mundell, Liverpool John Moores University.

Scientists have used the world's largest robotic telescope to make the earliest-ever measurement of the optical polarisation of a Gamma Ray Burst (GRB) just 203 seconds after the start of the cosmic explosion. This finding, which provides new insight into GRB physics, is published in Science today.

The scientists from Liverpool John Moores University and colleagues in the UK, Italy, France and Slovenia used the Liverpool Telescope on the island of La Palma and its novel new polarimeter, RINGO, to perform the measurement following detection of the burst by NASA's Swift satellite.

Gamma Ray Bursts are the most instantaneously powerful explosions in the Universe and are identified as brief, intense and completely unpredictable flashes of high energy gamma rays on the sky. They are thought to be produced by the death throes of a massive star and signal the birth of a new black hole or neutron star (magnetar) and ejection of an ultra-high speed jet of plasma. Until now, the composition of the ejected material has remained a mystery and, in particular the importance of magnetic fields has been hotly debated by GRB scientists.

The Liverpool measurement was obtained nearly 100 times faster than any previously published optical polarisation measurement for a GRB afterglow and answers some fundamental questions about the presence of magnetic fields.

Principal author of the Science paper and GRB team leader Dr Carole Mundell of the Astrophysics Research Institute, Liverpool John Moores University, said "Our new measurements, made shortly after the Gamma Ray Burst, show that the level of polarisation in the afterglow is very low. Combined with our knowledge of how the light from this explosion faded, this rules-out the presence of strong magnetic fields in the emitting material flowing out from the explosion - a key element of some theories of GRBs."

The so-called optical afterglow is thought to originate from light emitted when this ejected material impacts the gas surrounding the star. In the first few minutes after the initial burst of gamma rays, the optical light carries important clues to the origin of these catastrophic explosions; capturing this light at the earliest possible opportunity and measuring its properties is ideally suited to the capabilities of large robotic telescopes like the Liverpool Telescope.

Lord Martin Rees, Astronomer Royal and President of the Royal Society said "We are still flummoxed about the underlying trigger' for gamma ray bursts, and why they sometimes emit bright flashes of light. Theorists have a lot of tentative ideas, and these observations narrow down the range of options."

Professor Keith Mason, Chief Executive of PPARC and UK lead investigator on Swift's Ultra Violet/Optical Telescope, said, "This result demonstrates well the effectiveness of Swift's rapid response alert system, allowing robotic telescopes, such as the Liverpool Telescope, to follow up gamma ray bursts within seconds, furthering our knowledge with each detection."

Source: PPARC

Explore further: Magnetic Power Revealed in Gamma-Ray Burst Jet

Related Stories

Magnetic Power Revealed in Gamma-Ray Burst Jet

December 9, 2009

( -- A specialized camera on a telescope operated by U.K. astronomers from Liverpool has made the first measurement of magnetic fields in the afterglow of a gamma-ray burst (GRB). The result is reported in the ...

Glimpsing the infrastructure of a gamma-ray burst jet

December 4, 2013

( —A new study using observations from a novel instrument provides the best look to date at magnetic fields at the heart of gamma-ray bursts, the most energetic explosions in the universe. An international team ...

Liverpool Telescope plans double-sized successor

July 2, 2013

( —Planning is underway for a successor to the world's largest fully robotic telescope. The Liverpool Telescope (LT) is a 2-metre optical telescope located on La Palma that has been in operation since 2004. It ...

I, RoboNet - intelligent telescopes survey the violent skies

September 14, 2004

British astronomers are celebrating a world first that could revolutionise the future of astronomy. They have just begun a project to operate a global network of the world's biggest robotic telescopes, dubbed 'RoboNet-1.0' ...

Space station MAXI-mizing our understanding of the universe

January 16, 2014

Look up at the night sky ... do you see it? The stars of the cosmos bursting in magnificent explosions of death and rebirth! No? Well, then maybe you are not looking through the "eyes" of the Monitor of All-sky X-ray Image ...

Recommended for you

A mission to a metal world—The Psyche mission

October 9, 2015

In their drive to set exploration goals for the future, NASA's Discovery Program put out the call for proposals for their thirteenth Discovery mission in February 2014. After reviewing the 27 initial proposals, a panel of ...

What are white holes?

October 9, 2015

Black holes are created when stars die catastrophically in a supernova. So what in the universe is a white hole?

Image: Pluto's blue sky

October 9, 2015

Pluto's haze layer shows its blue color in this picture taken by the New Horizons Ralph/Multispectral Visible Imaging Camera (MVIC). The high-altitude haze is thought to be similar in nature to that seen at Saturn's moon ...

How to prepare for Mars? NASA consults Navy sub force

October 5, 2015

As NASA contemplates a manned voyage to Mars and the effects missions deeper into space could have on astronauts, it's tapping research from another outfit with experience sending people to the deep: the U.S. Navy submarine ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.